BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 24607832)

  • 1. Variance in the identification of microRNAs deregulated in Alzheimer's disease and possible role of lincRNAs in the pathology: the need of larger datasets.
    Lau P; Frigerio CS; De Strooper B
    Ageing Res Rev; 2014 Sep; 17():43-53. PubMed ID: 24607832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review.
    Millan MJ
    Prog Neurobiol; 2017 Sep; 156():1-68. PubMed ID: 28322921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emerging role of non-coding RNAs from extracellular vesicles in Alzheimer's disease.
    Xu YZ; Cheng MG; Wang X; Hu Y
    J Integr Neurosci; 2021 Mar; 20(1):239-245. PubMed ID: 33834709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomics Profiling of Alzheimer's Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of Long Noncoding RNAs.
    Magistri M; Velmeshev D; Makhmutova M; Faghihi MA
    J Alzheimers Dis; 2015; 48(3):647-65. PubMed ID: 26402107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer's disease brain, induces tau phosphorylation in neurons.
    Padmanabhan J; Levy M; Dickson DW; Potter H
    Brain; 2006 Nov; 129(Pt 11):3020-34. PubMed ID: 16987932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of microRNAs associated with Alzheimer's disease using oxidative stress cell model and different strains of senescence accelerated mice.
    Zhang R; Zhang Q; Niu J; Lu K; Xie B; Cui D; Xu S
    J Neurol Sci; 2014 Mar; 338(1-2):57-64. PubMed ID: 24423585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-coding RNA as lung disease biomarkers.
    Vencken SF; Greene CM; McKiernan PJ
    Thorax; 2015 May; 70(5):501-3. PubMed ID: 25550385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus.
    Lukiw WJ
    Neuroreport; 2007 Feb; 18(3):297-300. PubMed ID: 17314675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Progress of research on microRNA and Alzheimer's disease].
    Dong SH; Wang T; Xiao SF
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2013 Feb; 30(1):64-6. PubMed ID: 23450482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA networks surrounding APP and amyloid-β metabolism--implications for Alzheimer's disease.
    Schonrock N; Matamales M; Ittner LM; Götz J
    Exp Neurol; 2012 Jun; 235(2):447-54. PubMed ID: 22119426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.
    Wu P; Zuo X; Deng H; Liu X; Liu L; Ji A
    Brain Res Bull; 2013 Aug; 97():69-80. PubMed ID: 23756188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of neuronal growth regulator 1 (NEGR1) adhesion protein.
    Kaur P; Tan JR; Karolina DS; Sepramaniam S; Armugam A; Wong PT; Jeyaseelan K
    Biochim Biophys Acta; 2016 Apr; 1863(4):533-43. PubMed ID: 26723899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long non-coding RNAs in brain development, synaptic biology, and Alzheimer's disease.
    Shi C; Zhang L; Qin C
    Brain Res Bull; 2017 Jun; 132():160-169. PubMed ID: 28347717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-coding RNAs in cardiovascular ageing.
    Gupta SK; Piccoli MT; Thum T
    Ageing Res Rev; 2014 Sep; 17():79-85. PubMed ID: 24491506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neurobiology of non-coding RNAs and Alzheimer's disease pathogenesis: Pathways, mechanisms and translational opportunities.
    Lauretti E; Dabrowski K; Praticò D
    Ageing Res Rev; 2021 Nov; 71():101425. PubMed ID: 34384901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased pro-nerve growth factor and decreased brain-derived neurotrophic factor in non-Alzheimer's disease tauopathies.
    Belrose JC; Masoudi R; Michalski B; Fahnestock M
    Neurobiol Aging; 2014 Apr; 35(4):926-33. PubMed ID: 24112788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-RNA interactions in gene regulation: the coding and noncoding players.
    Guil S; Esteller M
    Trends Biochem Sci; 2015 May; 40(5):248-56. PubMed ID: 25818326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains.
    Satoh J
    J Pharmacol Sci; 2010; 114(3):269-75. PubMed ID: 20953120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease, inhibits bcl2 translation.
    Wang X; Liu P; Zhu H; Xu Y; Ma C; Dai X; Huang L; Liu Y; Zhang L; Qin C
    Brain Res Bull; 2009 Oct; 80(4-5):268-73. PubMed ID: 19683563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging roles of long non-coding RNAs in the pathogenesis of Alzheimer's disease.
    Cortini F; Roma F; Villa C
    Ageing Res Rev; 2019 Mar; 50():19-26. PubMed ID: 30610928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.