These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24608081)

  • 21. Designer metalloenzymes for synthetic biology: Enzyme hybrids for catalysis.
    Jarvis AG
    Curr Opin Chem Biol; 2020 Oct; 58():63-71. PubMed ID: 32768658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinspired catalyst design and artificial metalloenzymes.
    Deuss PJ; den Heeten R; Laan W; Kamer PC
    Chemistry; 2011 Apr; 17(17):4680-98. PubMed ID: 21480401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metalloprotein mimics - old tools in a new light.
    Happe T; Hemschemeier A
    Trends Biotechnol; 2014 Apr; 32(4):170-6. PubMed ID: 24630475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
    Schwizer F; Okamoto Y; Heinisch T; Gu Y; Pellizzoni MM; Lebrun V; Reuter R; Köhler V; Lewis JC; Ward TR
    Chem Rev; 2018 Jan; 118(1):142-231. PubMed ID: 28714313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox-reversible siderophore-based catalyst anchoring within cross-linked artificial metalloenzyme aggregates enables enantioselectivity switching.
    Miller AH; Thompson SA; Blagova EV; Wilson KS; Grogan G; Duhme-Klair AK
    Chem Commun (Camb); 2024 May; 60(42):5490-5493. PubMed ID: 38699837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes.
    Adachi T; Harada A; Yamaguchi H
    Sci Rep; 2019 Sep; 9(1):13551. PubMed ID: 31537832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli's Periplasm.
    Zhao J; Rebelein JG; Mallin H; Trindler C; Pellizzoni MM; Ward TR
    J Am Chem Soc; 2018 Oct; 140(41):13171-13175. PubMed ID: 30272972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.
    Klein AS; Zeymer C
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 33635315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial metalloenzymes derived from three-helix bundles.
    Tebo AG; Pecoraro VL
    Curr Opin Chem Biol; 2015 Apr; 25():65-70. PubMed ID: 25579452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis.
    Lam Q; Kato M; Cheruzel L
    Biochim Biophys Acta; 2016 May; 1857(5):589-597. PubMed ID: 26392147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions.
    Hirota S; Lin YW
    J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Metalloprotein Functions in Designed and Native Scaffolds.
    Nastri F; D'Alonzo D; Leone L; Zambrano G; Pavone V; Lombardi A
    Trends Biochem Sci; 2019 Dec; 44(12):1022-1040. PubMed ID: 31307903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unlocking the therapeutic potential of artificial metalloenzymes.
    Tanaka K; Vong K
    Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(3):79-94. PubMed ID: 32161212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergence of metal selectivity and promiscuity in metalloenzymes.
    Eom H; Song WJ
    J Biol Inorg Chem; 2019 Jun; 24(4):517-531. PubMed ID: 31115763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. C-H functionalization reactions catalyzed by artificial metalloenzymes.
    Yu K; Ward TR
    J Inorg Biochem; 2024 Sep; 258():112621. PubMed ID: 38852295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of artificial backbone connectivity in the development of metalloenzyme mimics.
    Wolfe JA; Horne WS
    Curr Opin Chem Biol; 2024 Aug; 81():102509. PubMed ID: 39098212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*.
    Chordia S; Narasimhan S; Lucini Paioni A; Baldus M; Roelfes G
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5913-5920. PubMed ID: 33428816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes.
    Jeong WJ; Yu J; Song WJ
    Chem Commun (Camb); 2020 Aug; 56(67):9586-9599. PubMed ID: 32691751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Receptor-Based Artificial Metalloenzymes on Living Human Cells.
    Ghattas W; Dubosclard V; Wick A; Bendelac A; Guillot R; Ricoux R; Mahy JP
    J Am Chem Soc; 2018 Jul; 140(28):8756-8762. PubMed ID: 29909636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.