These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 24608081)
41. The mechanistic insights into different aspects of promiscuity in metalloenzymes. Tripathi A; Dubey KD Adv Protein Chem Struct Biol; 2024; 141():23-66. PubMed ID: 38960476 [TBL] [Abstract][Full Text] [Related]
42. Protein-based hybrid catalysts--design and evolution. Köhler V; Wilson YM; Lo C; Sardo A; Ward TR Curr Opin Biotechnol; 2010 Dec; 21(6):744-52. PubMed ID: 20926284 [TBL] [Abstract][Full Text] [Related]
43. Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes. Pordea A; Ward TR Chem Commun (Camb); 2008 Sep; (36):4239-49. PubMed ID: 18802535 [TBL] [Abstract][Full Text] [Related]
48. Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold. Bos J; Browne WR; Driessen AJ; Roelfes G J Am Chem Soc; 2015 Aug; 137(31):9796-9. PubMed ID: 26214343 [TBL] [Abstract][Full Text] [Related]
50. Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier. Jung SM; Lee J; Song WJ J Inorg Biochem; 2021 Oct; 223():111552. PubMed ID: 34332336 [TBL] [Abstract][Full Text] [Related]
51. Artificial metalloenzymes in a nutshell: the quartet for efficient catalysis. Ebensperger P; Jessen-Trefzer C Biol Chem; 2022 Mar; 403(4):403-412. PubMed ID: 34653321 [TBL] [Abstract][Full Text] [Related]
52. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Himiyama T; Okamoto Y Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938 [TBL] [Abstract][Full Text] [Related]
53. New "Cats" in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes. Hartwig JF; Ward TR Acc Chem Res; 2019 May; 52(5):1145. PubMed ID: 31117418 [No Abstract] [Full Text] [Related]
54. Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Samanta A; Sabatino V; Ward TR; Walther A Nat Nanotechnol; 2020 Nov; 15(11):914-921. PubMed ID: 32895521 [TBL] [Abstract][Full Text] [Related]
55. Recent advances in the design and optimization of artificial metalloenzymes. Morita I; Ward TR Curr Opin Chem Biol; 2024 Aug; 81():102508. PubMed ID: 39098211 [TBL] [Abstract][Full Text] [Related]
56. Metalloenzyme design and engineering through strategic modifications of native protein scaffolds. Petrik ID; Liu J; Lu Y Curr Opin Chem Biol; 2014 Apr; 19():67-75. PubMed ID: 24513641 [TBL] [Abstract][Full Text] [Related]
57. Design of Artificial Enzymes: Insights into Protein Scaffolds. Hanreich S; Bonandi E; Drienovská I Chembiochem; 2023 Mar; 24(6):e202200566. PubMed ID: 36418221 [TBL] [Abstract][Full Text] [Related]
58. A Selective Sulfide Oxidation Catalyzed by Heterogeneous Artificial Metalloenzymes Iron@NikA. Lopez S; Marchi-Delapierre C; Cavazza C; Ménage S Chemistry; 2020 Dec; 26(70):16633-16638. PubMed ID: 33079395 [TBL] [Abstract][Full Text] [Related]
59. Artificial metalloenzymes for the diastereoselective reduction of NAD(+) to NAD(2)H. Quinto T; Häussinger D; Köhler V; Ward TR Org Biomol Chem; 2015 Jan; 13(2):357-60. PubMed ID: 25379837 [TBL] [Abstract][Full Text] [Related]