These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 24608259)
1. Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells. Gowda SR; Gallagher KG; Croy JR; Bettge M; Thackeray MM; Balasubramanian M Phys Chem Chem Phys; 2014 Apr; 16(15):6898-902. PubMed ID: 24608259 [TBL] [Abstract][Full Text] [Related]
2. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode. Wang J; Zhang Q; Li X; Wang Z; Guo H; Xu D; Zhang K Phys Chem Chem Phys; 2014 Aug; 16(30):16021-9. PubMed ID: 24963917 [TBL] [Abstract][Full Text] [Related]
3. Role of local and electronic structural changes with partially anion substitution lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study. Okumura T; Fukutsuka T; Matsumoto K; Orikasa Y; Arai H; Ogumi Z; Uchimoto Y Dalton Trans; 2011 Oct; 40(38):9752-64. PubMed ID: 21869978 [TBL] [Abstract][Full Text] [Related]
4. Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries. Vissers DR; Chen Z; Shao Y; Engelhard M; Das U; Redfern P; Curtiss LA; Pan B; Liu J; Amine K ACS Appl Mater Interfaces; 2016 Jun; 8(22):14244-51. PubMed ID: 27152912 [TBL] [Abstract][Full Text] [Related]
5. The formation mechanism of fluorescent metal complexes at the Li(x)Ni(0.5)Mn(1.5)O(4-δ)/carbonate ester electrolyte interface. Jarry A; Gottis S; Yu YS; Roque-Rosell J; Kim C; Cabana J; Kerr J; Kostecki R J Am Chem Soc; 2015 Mar; 137(10):3533-9. PubMed ID: 25714859 [TBL] [Abstract][Full Text] [Related]
6. Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. Xiao X; Liu Z; Baggetto L; Veith GM; More KL; Unocic RR Phys Chem Chem Phys; 2014 Jun; 16(22):10398-402. PubMed ID: 24733563 [TBL] [Abstract][Full Text] [Related]
7. Combined Electron Paramagnetic Resonance and Atomic Absorption Spectroscopy/Inductively Coupled Plasma Analysis As Diagnostics for Soluble Manganese Species from Mn-Based Positive Electrode Materials in Li-ion Cells. Shilina Y; Ziv B; Meir A; Banerjee A; Ruthstein S; Luski S; Aurbach D; Halalay IC Anal Chem; 2016 Apr; 88(8):4440-7. PubMed ID: 27018717 [TBL] [Abstract][Full Text] [Related]
8. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions. Banerjee A; Shilina Y; Ziv B; Ziegelbauer JM; Luski S; Aurbach D; Halalay IC J Am Chem Soc; 2017 Feb; 139(5):1738-1741. PubMed ID: 28122187 [TBL] [Abstract][Full Text] [Related]
9. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related]
10. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries. Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504 [TBL] [Abstract][Full Text] [Related]
11. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288 [TBL] [Abstract][Full Text] [Related]
12. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode. Mirceski V; Gulaboski R J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890 [TBL] [Abstract][Full Text] [Related]
13. Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries. Nithya C; Gopukumar S ChemSusChem; 2013 May; 6(5):898-904. PubMed ID: 23512863 [TBL] [Abstract][Full Text] [Related]
14. Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode. Gibbon-Walsh K; Salaün P; van den Berg CM Anal Chim Acta; 2012 Jan; 710():50-7. PubMed ID: 22123111 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Fei S; Chen J; Yao S; Deng G; He D; Kuang Y Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706 [TBL] [Abstract][Full Text] [Related]
16. Manganese speciation in Diplodon chilensis patagonicus shells: a XANES study. Soldati AL; Goettlicher J; Jacob DE; Vilas VV J Synchrotron Radiat; 2010 Mar; 17(2):193-201. PubMed ID: 20157271 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
18. Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite-wax composite electrode. Jayasri D; Narayanan SS J Hazard Mater; 2007 Jun; 144(1-2):348-54. PubMed ID: 17118545 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. Li Q; Batchelor-McAuley C; Compton RG J Phys Chem B; 2010 Jun; 114(21):7423-8. PubMed ID: 20446746 [TBL] [Abstract][Full Text] [Related]
20. Surface passivation of natural graphite electrode for lithium ion battery by chlorine gas. Suzuki S; Mazej Z; Zemva B; Ohzawa Y; Nakajima T Acta Chim Slov; 2013; 60(3):513-20. PubMed ID: 24169705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]