BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24608425)

  • 1. Application of molecular technologies for phosphoproteomic analysis of clinical samples.
    Pierobon M; Wulfkuhle J; Liotta L; Petricoin E
    Oncogene; 2015 Feb; 34(7):805-14. PubMed ID: 24608425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis of contribution of protein phosphorylation in the development of the diseases].
    Zavialova MG; Zgoda VG; Nikolaev EN
    Biomed Khim; 2017 Mar; 63(2):101-114. PubMed ID: 28414281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor.
    Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D
    J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars.
    Pi E; Qu L; Hu J; Huang Y; Qiu L; Lu H; Jiang B; Liu C; Peng T; Zhao Y; Wang H; Tsai SN; Ngai S; Du L
    Mol Cell Proteomics; 2016 Jan; 15(1):266-88. PubMed ID: 26407991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
    Song C; Ye M; Liu Z; Cheng H; Jiang X; Han G; Songyang Z; Tan Y; Wang H; Ren J; Xue Y; Zou H
    Mol Cell Proteomics; 2012 Oct; 11(10):1070-83. PubMed ID: 22798277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Phosphoproteomic Analysis Pipeline for Peels of Tropical Fruits.
    Juarez-Escobar J; Elizalde-Contreras JM; Loyola-Vargas VM; Ruiz-May E
    Methods Mol Biol; 2020; 2139():179-196. PubMed ID: 32462587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed Phosphoproteomic Study of Brain in Patients with Alzheimer's Disease and Age-Matched Cognitively Healthy Controls.
    Sathe G; Mangalaparthi KK; Jain A; Darrow J; Troncoso J; Albert M; Moghekar A; Pandey A
    OMICS; 2020 Apr; 24(4):216-227. PubMed ID: 32182160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research.
    Chan CY; Gritsenko MA; Smith RD; Qian WJ
    Expert Rev Proteomics; 2016; 13(4):421-33. PubMed ID: 26960075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles of phosphoproteomics and applications in cancer research.
    Higgins L; Gerdes H; Cutillas PR
    Biochem J; 2023 Mar; 480(6):403-420. PubMed ID: 36961757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteome analyses identify PrfA-responsive proteins and phosphoproteins in Listeria monocytogenes.
    Misra SK; Moussan Désirée Aké F; Wu Z; Milohanic E; Cao TN; Cossart P; Deutscher J; Monnet V; Archambaud C; Henry C
    J Proteome Res; 2014 Dec; 13(12):6046-57. PubMed ID: 25383790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technologies and challenges in large-scale phosphoproteomics.
    Engholm-Keller K; Larsen MR
    Proteomics; 2013 Mar; 13(6):910-31. PubMed ID: 23404676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation.
    Guo M; Huang BX
    Proteomics; 2013 Feb; 13(3-4):424-37. PubMed ID: 23125184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomic analysis of protein phosphorylation networks in Tetrahymena thermophila, a model single-celled organism.
    Tian M; Chen X; Xiong Q; Xiong J; Xiao C; Ge F; Yang F; Miao W
    Mol Cell Proteomics; 2014 Feb; 13(2):503-19. PubMed ID: 24200585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics characterization of exosome cargo.
    Schey KL; Luther JM; Rose KL
    Methods; 2015 Oct; 87():75-82. PubMed ID: 25837312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network.
    Kumar R; Kumar A; Subba P; Gayali S; Barua P; Chakraborty S; Chakraborty N
    J Proteomics; 2014 Jun; 105():58-73. PubMed ID: 24747304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of malignancy-associated phosphoproteome changes in human colorectal cancer induced by cell surface binding of growth-inhibitory galectin-4.
    Michalak M; Warnken U; Schnölzer M; Gabius HJ; Kopitz J
    IUBMB Life; 2019 Mar; 71(3):364-375. PubMed ID: 30550624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Illuminating the dark phosphoproteome.
    Needham EJ; Parker BL; Burykin T; James DE; Humphrey SJ
    Sci Signal; 2019 Jan; 12(565):. PubMed ID: 30670635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed times to tissue fixation result in unpredictable global phosphoproteome changes.
    Gündisch S; Grundner-Culemann K; Wolff C; Schott C; Reischauer B; Machatti M; Groelz D; Schaab C; Tebbe A; Becker KF
    J Proteome Res; 2013 Oct; 12(10):4424-34. PubMed ID: 23984901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CPPA: A Web Tool for Exploring Proteomic and Phosphoproteomic Data in Cancer.
    Hu GS; Zheng ZZ; He YH; Wang DC; Liu W
    J Proteome Res; 2023 Feb; 22(2):368-373. PubMed ID: 36507870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.