BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24608425)

  • 41. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling.
    Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM
    J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PhosphoPath: Visualization of Phosphosite-centric Dynamics in Temporal Molecular Networks.
    Raaijmakers LM; Giansanti P; Possik PA; Mueller J; Peeper DS; Heck AJ; Altelaar AF
    J Proteome Res; 2015 Oct; 14(10):4332-41. PubMed ID: 26317507
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components.
    Mascaraque V; Hernáez ML; Jiménez-Sánchez M; Hansen R; Gil C; Martín H; Cid VJ; Molina M
    Mol Cell Proteomics; 2013 Mar; 12(3):557-74. PubMed ID: 23221999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective.
    Padrão AI; Vitorino R; Duarte JA; Ferreira R; Amado F
    J Proteome Res; 2013 Oct; 12(10):4257-67. PubMed ID: 23964737
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors.
    Schweppe DK; Rigas JR; Gerber SA
    J Proteomics; 2013 Oct; 91():286-96. PubMed ID: 23911959
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative phosphoproteomics using acetone-based peptide labeling: method evaluation and application to a cardiac ischemia/reperfusion model.
    Wijeratne AB; Manning JR; Schultz Jel J; Greis KD
    J Proteome Res; 2013 Oct; 12(10):4268-79. PubMed ID: 24016359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of Phosphorylated Proteins Using Mass Spectrometry.
    Yu LR; Veenstra TD
    Curr Protein Pept Sci; 2021; 22(2):148-157. PubMed ID: 33231146
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomic strategies to characterize signaling pathways.
    Harsha HC; Pinto SM; Pandey A
    Methods Mol Biol; 2013; 1007():359-77. PubMed ID: 23666735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasma membrane proteomics and its application in clinical cancer biomarker discovery.
    Leth-Larsen R; Lund RR; Ditzel HJ
    Mol Cell Proteomics; 2010 Jul; 9(7):1369-82. PubMed ID: 20382631
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteome, phosphoproteome, and hydroxyproteome of liver mitochondria in diabetic rats at early pathogenic stages.
    Deng WJ; Nie S; Dai J; Wu JR; Zeng R
    Mol Cell Proteomics; 2010 Jan; 9(1):100-16. PubMed ID: 19700791
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights regarding fungal phosphoproteomic analysis.
    Ribeiro LFC; Chelius CL; Harris SD; Marten MR
    Fungal Genet Biol; 2017 Jul; 104():38-44. PubMed ID: 28288883
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative Phosphoproteomic Analysis of Brain Tissues.
    Bai B; Tan H; Peng J
    Methods Mol Biol; 2017; 1598():199-211. PubMed ID: 28508362
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer.
    Organ SL; Tong J; Taylor P; St-Germain JR; Navab R; Moran MF; Tsao MS
    J Proteome Res; 2011 Jul; 10(7):3200-11. PubMed ID: 21609022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A large-scale proteomic analysis of human embryonic stem cells.
    Schulz TC; Swistowska AM; Liu Y; Swistowski A; Palmarini G; Brimble SN; Sherrer E; Robins AJ; Rao MS; Zeng X
    BMC Genomics; 2007 Dec; 8():478. PubMed ID: 18162134
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Personalization of prostate cancer therapy through phosphoproteomics.
    Yang W; Freeman MR; Kyprianou N
    Nat Rev Urol; 2018 Aug; 15(8):483-497. PubMed ID: 29752463
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae.
    Renvoisé M; Bonhomme L; Davanture M; Valot B; Zivy M; Lemaire C
    J Proteomics; 2014 Jun; 106():140-50. PubMed ID: 24769239
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphoproteomics in translational research: a sarcoma perspective.
    Noujaim J; Payne LS; Judson I; Jones RL; Huang PH
    Ann Oncol; 2016 May; 27(5):787-94. PubMed ID: 26802162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integrating proteomic and phosphoproteomic data for pathway analysis in breast cancer.
    Ren J; Wang B; Li J
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):130. PubMed ID: 30577793
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative phosphoproteome analysis of Magnaporthe oryzae-responsive proteins in susceptible and resistant rice cultivars.
    Li Y; Ye Z; Nie Y; Zhang J; Wang GL; Wang Z
    J Proteomics; 2015 Feb; 115():66-80. PubMed ID: 25540933
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mass Spectrometry-Based Identification of Phospho-Tyr in Plant Proteomics.
    Ahsan N; Wilson RS; Rao RSP; Salvato F; Sabila M; Ullah H; Miernyk JA
    J Proteome Res; 2020 Feb; 19(2):561-571. PubMed ID: 31967836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.