These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24608665)

  • 1. Hsp90-dependent assembly of the DBC2/RhoBTB2-Cullin3 E3-ligase complex.
    Manjarrez JR; Sun L; Prince T; Matts RL
    PLoS One; 2014; 9(3):e90054. PubMed ID: 24608665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer.
    Choi YM; Kim KB; Lee JH; Chun YK; An IS; An S; Bae S
    Oncogene; 2017 May; 36(20):2802-2812. PubMed ID: 27941885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells.
    Samant RS; Clarke PA; Workman P
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6834-9. PubMed ID: 24760825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.
    Prince TL; Kijima T; Tatokoro M; Lee S; Tsutsumi S; Yim K; Rivas C; Alarcon S; Schwartz H; Khamit-Kush K; Scroggins BT; Beebe K; Trepel JB; Neckers L
    PLoS One; 2015; 10(10):e0141786. PubMed ID: 26517842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Hsp90 client proteins by a Cullin5-RING E3 ubiquitin ligase.
    Ehrlich ES; Wang T; Luo K; Xiao Z; Niewiadomska AM; Martinez T; Xu W; Neckers L; Yu XF
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20330-5. PubMed ID: 19933325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.
    Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C
    Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HECTD3 Mediates an HSP90-Dependent Degradation Pathway for Protein Kinase Clients.
    Li Z; Zhou L; Prodromou C; Savic V; Pearl LH
    Cell Rep; 2017 Jun; 19(12):2515-2528. PubMed ID: 28636940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex.
    Wilkins A; Ping Q; Carpenter CL
    Genes Dev; 2004 Apr; 18(8):856-61. PubMed ID: 15107402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells.
    McKinnon CM; Lygoe KA; Skelton L; Mitter R; Mellor H
    Oncogene; 2008 Nov; 27(54):6856-65. PubMed ID: 18762809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation.
    Collado D; Yoshihara T; Hamaguchi M
    Biochem Biophys Res Commun; 2007 Aug; 360(3):600-3. PubMed ID: 17617377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RhoBTB2 (DBC2) comes of age as a multifunctional tumor suppressor.
    Freeman SN; Cress WD
    Cancer Biol Ther; 2010 Dec; 10(11):1123-5. PubMed ID: 20980811
    [No Abstract]   [Full Text] [Related]  

  • 12. Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer.
    Ruckova E; Muller P; Nenutil R; Vojtesek B
    Cell Mol Biol Lett; 2012 Sep; 17(3):446-58. PubMed ID: 22669480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the ubiquitination of G protein βγ subunits by KCTD5/Cullin3 E3 ligase.
    Jiang W; Wang W; Kong Y; Zheng S
    Sci Adv; 2023 Jul; 9(28):eadg8369. PubMed ID: 37450587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotavirus NSP1 Associates with Components of the Cullin RING Ligase Family of E3 Ubiquitin Ligases.
    Lutz LM; Pace CR; Arnold MM
    J Virol; 2016 Jul; 90(13):6036-48. PubMed ID: 27099313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ErbB2 degradation mediated by the co-chaperone protein CHIP.
    Zhou P; Fernandes N; Dodge IL; Reddi AL; Rao N; Safran H; DiPetrillo TA; Wazer DE; Band V; Band H
    J Biol Chem; 2003 Apr; 278(16):13829-37. PubMed ID: 12574167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes--evidence for an autoregulatory mechanism.
    Berthold J; Schenková K; Ramos S; Miura Y; Furukawa M; Aspenström P; Rivero F
    Exp Cell Res; 2008 Nov; 314(19):3453-65. PubMed ID: 18835386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RACK1 vs. HSP90: competition for HIF-1 alpha degradation vs. stabilization.
    Liu YV; Semenza GL
    Cell Cycle; 2007 Mar; 6(6):656-9. PubMed ID: 17361105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of RhoBTB2 by the Cul3 ubiquitin ligase complex.
    Wilkins A; Carpenter CL
    Methods Enzymol; 2008; 439():103-9. PubMed ID: 18374159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Ubiquitin-like with Plant Homeodomain and RING Finger Domain 1 (UHRF1) Protein Stability by Heat Shock Protein 90 Chaperone Machinery.
    Ding G; Chen P; Zhang H; Huang X; Zang Y; Li J; Li J; Wong J
    J Biol Chem; 2016 Sep; 291(38):20125-35. PubMed ID: 27489107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+/S100 proteins act as upstream regulators of the chaperone-associated ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein).
    Shimamoto S; Kubota Y; Yamaguchi F; Tokumitsu H; Kobayashi R
    J Biol Chem; 2013 Mar; 288(10):7158-68. PubMed ID: 23344957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.