These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24608863)

  • 1. Theoretical prediction of electronic structure and carrier mobility in single-walled MoS₂ nanotubes.
    Xiao J; Long M; Li X; Xu H; Huang H; Gao Y
    Sci Rep; 2014 Mar; 4():4327. PubMed ID: 24608863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons.
    Xiao J; Long M; Zhang X; Zhang D; Xu H; Chan KS
    J Phys Chem Lett; 2015 Oct; 6(20):4141-7. PubMed ID: 26722789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the electronic structure of single-walled black phosphorus nanotubes.
    Guan L; Chen G; Tao J
    Phys Chem Chem Phys; 2016 Jun; 18(22):15177-81. PubMed ID: 27198550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier mobility of MoS2 nanoribbons with edge chemical modification.
    Xiao J; Long M; Li M; Li X; Xu H; Chan K
    Phys Chem Chem Phys; 2015 Mar; 17(10):6865-73. PubMed ID: 25672652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes.
    Herrera-Carbajal A; Rodríguez-Lugo V; Hernández-Ávila J; Sánchez-Castillo A
    Phys Chem Chem Phys; 2021 Jun; 23(23):13075-13086. PubMed ID: 34042934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the electronic structure of single-walled GeS nanotubes.
    Yu D; Ku R; Hu Y; Wei Y; Zhu C; Liu Z; Zhang G; Li W; Yang J; Li X
    RSC Adv; 2022 Oct; 12(45):29291-29299. PubMed ID: 36320760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh anisotropic carrier mobility in ZnSb monolayers functionalized with halogen atoms.
    Yang W; Guan Z; Wang H; Chen Y; Wang H; Li J
    RSC Adv; 2022 Sep; 12(41):26994-27001. PubMed ID: 36320841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical predictions of size-dependent carrier mobility and polarity in graphene.
    Long MQ; Tang L; Wang D; Wang L; Shuai Z
    J Am Chem Soc; 2009 Dec; 131(49):17728-9. PubMed ID: 19924857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and electronic properties of α-, β-, γ-, and 6,6,18-graphdiyne sheets and nanotubes.
    Li L; Qiao W; Bai H; Huang Y
    RSC Adv; 2020 Apr; 10(28):16709-16717. PubMed ID: 35498857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions.
    Long M; Tang L; Wang D; Li Y; Shuai Z
    ACS Nano; 2011 Apr; 5(4):2593-600. PubMed ID: 21443198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy gaps in "metallic" single-walled carbon nanotubes.
    Ouyang M; Huang JL; Cheung CL; Lieber CM
    Science; 2001 Apr; 292(5517):702-5. PubMed ID: 11326093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets.
    Xiao J; Long M; Zhang X; Ouyang J; Xu H; Gao Y
    Sci Rep; 2015 Jun; 5():9961. PubMed ID: 26035176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverse carrier mobility of monolayer BNC
    Wu T; Deng K; Deng W; Lu R
    J Phys Condens Matter; 2017 Nov; 29(45):455305. PubMed ID: 29049025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-walled MoTe(2) nanotubes.
    Wu X; Xu Z; Zeng XC
    Nano Lett; 2007 Oct; 7(10):2987-92. PubMed ID: 17725376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and electronic properties of the double-wall nanotubes constructed from SiO2 nanotubes encapsulated inside zigzag carbon nanotubes.
    Qiao W; Bai H; Zhu Y; Huang Y
    J Phys Condens Matter; 2012 May; 24(18):185302. PubMed ID: 22481241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-dependent carrier mobility and its gate-voltage modifying effects for functionalized single walled black phosphorus tubes.
    Kuang W; Hu R; Fan ZQ; Zhang ZH
    Nanotechnology; 2019 Apr; 30(14):145201. PubMed ID: 30593010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphenylene Nanotubes.
    Koch AT; Khoshaman AH; Fan HD; Sawatzky GA; Nojeh A
    J Phys Chem Lett; 2015 Oct; 6(19):3982-7. PubMed ID: 26722903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Structures of AlGaN2 Nanotubes and AlN-GaN Nanotube Superlattice.
    Pan H; Feng YP; Lin J
    J Chem Theory Comput; 2008 May; 4(5):703-7. PubMed ID: 26621085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes.
    Soto M; Boyer TA; Biradar S; Ge L; Vajtai R; Elías-Zúñiga A; Ajayan PM; Barrera EV
    Nanotechnology; 2015 Apr; 26(16):165201. PubMed ID: 25816374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.