BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 24609033)

  • 1. The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels.
    Young JC
    Dis Model Mech; 2014 Mar; 7(3):319-29. PubMed ID: 24609033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels.
    Hantouche C; Williamson B; Valinsky WC; Solomon J; Shrier A; Young JC
    J Biol Chem; 2017 Feb; 292(6):2287-2300. PubMed ID: 27998983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG.
    Ficker E; Dennis AT; Wang L; Brown AM
    Circ Res; 2003 Jun; 92(12):e87-100. PubMed ID: 12775586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases.
    Adnan H; Zhang Z; Park HJ; Tailor C; Che C; Kamani M; Spitalny G; Binnington B; Lingwood C
    PLoS One; 2016; 11(12):e0166948. PubMed ID: 27935997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease.
    Duncan EJ; Cheetham ME; Chapple JP; van der Spuy J
    Subcell Biochem; 2015; 78():243-73. PubMed ID: 25487025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.
    Meacham GC; Patterson C; Zhang W; Younger JM; Cyr DM
    Nat Cell Biol; 2001 Jan; 3(1):100-5. PubMed ID: 11146634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy.
    Hutt DM; Mishra SK; Roth DM; Larsen MB; Angles F; Frizzell RA; Balch WE
    J Biol Chem; 2018 Aug; 293(35):13682-13695. PubMed ID: 29986884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Binding of HSC70 and its Co-Chaperones to Structural Hotspots on CFTR.
    Baaklini I; Gonçalves CC; Lukacs GL; Young JC
    Sci Rep; 2020 Mar; 10(1):4176. PubMed ID: 32144307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HERG channel trafficking.
    Ficker E; Dennis A; Kuryshev Y; Wible BA; Brown AM
    Novartis Found Symp; 2005; 266():57-69; discussion 70-4, 95-9. PubMed ID: 16050262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using pharmacological chaperones to restore proteostasis.
    Wang YJ; Di XJ; Mu TW
    Pharmacol Res; 2014 May; 83():3-9. PubMed ID: 24747662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNAJB12 and Hsp70 triage arrested intermediates of N1303K-CFTR for endoplasmic reticulum-associated autophagy.
    He L; Kennedy AS; Houck S; Aleksandrov A; Quinney NL; Cyr-Scully A; Cholon DM; Gentzsch M; Randell SH; Ren HY; Cyr DM
    Mol Biol Cell; 2021 Apr; 32(7):538-553. PubMed ID: 33534640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation.
    Stolz A; Besser S; Hottmann H; Wolf DH
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15271-6. PubMed ID: 23988329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator.
    Fu L; Sztul E
    J Cell Biol; 2003 Jan; 160(2):157-63. PubMed ID: 12538638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. hERG quality control and the long QT syndrome.
    Foo B; Williamson B; Young JC; Lukacs G; Shrier A
    J Physiol; 2016 May; 594(9):2469-81. PubMed ID: 26718903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mammalian ER-located J-protein, DNAJB14, can accelerate ERAD of misfolded membrane proteins.
    Sopha P; Kadokura H; Yamamoto YH; Takeuchi M; Saito M; Tsuru A; Kohno K
    Cell Struct Funct; 2012; 37(2):177-87. PubMed ID: 23018488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-chaperone FKBP38 promotes HERG trafficking.
    Walker VE; Atanasiu R; Lam H; Shrier A
    J Biol Chem; 2007 Aug; 282(32):23509-16. PubMed ID: 17569659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator.
    Skach WR
    Kidney Int; 2000 Mar; 57(3):825-31. PubMed ID: 10720935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.
    Bebök Z; Mazzochi C; King SA; Hong JS; Sorscher EJ
    J Biol Chem; 1998 Nov; 273(45):29873-8. PubMed ID: 9792704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.