BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 24609033)

  • 21. Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators.
    Estabrooks S; Brodsky JL
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long QT syndrome-associated I593R mutation in HERG potassium channel activates ER stress pathways.
    Keller SH; Platoshyn O; Yuan JX
    Cell Biochem Biophys; 2005; 43(3):365-77. PubMed ID: 16244363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein misfolding in disease and small molecule therapies.
    Gomes CM
    Curr Top Med Chem; 2012; 12(22):2460-9. PubMed ID: 23339300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain.
    Needham PG; Goeckeler-Fried JL; Zhang C; Sun Z; Wetzel AR; Bertrand CA; Brodsky JL
    Biochem J; 2021 Dec; 478(24):4203-4220. PubMed ID: 34821356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hsp40 chaperones promote degradation of the HERG potassium channel.
    Walker VE; Wong MJ; Atanasiu R; Hantouche C; Young JC; Shrier A
    J Biol Chem; 2010 Jan; 285(5):3319-29. PubMed ID: 19940115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A chaperone trap contributes to the onset of cystic fibrosis.
    Coppinger JA; Hutt DM; Razvi A; Koulov AV; Pankow S; Yates JR; Balch WE
    PLoS One; 2012; 7(5):e37682. PubMed ID: 22701530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein Misfolding Diseases and Therapeutic Approaches.
    Yadav K; Yadav A; Vashistha P; Pandey VP; Dwivedi UN
    Curr Protein Pept Sci; 2019; 20(12):1226-1245. PubMed ID: 31187709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Small-molecule modulation of cellular chaperones to treat protein misfolding disorders.
    Sloan LA; Fillmore MC; Churcher I
    Curr Opin Drug Discov Devel; 2009 Sep; 12(5):666-81. PubMed ID: 19736625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergent properties of proteostasis in managing cystic fibrosis.
    Balch WE; Roth DM; Hutt DM
    Cold Spring Harb Perspect Biol; 2011 Feb; 3(2):. PubMed ID: 21421917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CFTR: new members join the fold.
    Skach WR
    Cell; 2006 Nov; 127(4):673-5. PubMed ID: 17110327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis.
    Bergbower E; Boinot C; Sabirzhanova I; Guggino W; Cebotaru L
    Cell Physiol Biochem; 2018; 45(2):639-655. PubMed ID: 29402832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hsp70 and DNAJA2 limit CFTR levels through degradation.
    Kim Chiaw P; Hantouche C; Wong MJH; Matthes E; Robert R; Hanrahan JW; Shrier A; Young JC
    PLoS One; 2019; 14(8):e0220984. PubMed ID: 31408507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.
    Loo MA; Jensen TJ; Cui L; Hou Y; Chang XB; Riordan JR
    EMBO J; 1998 Dec; 17(23):6879-87. PubMed ID: 9843494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CFTR and chaperones: processing and degradation.
    Amaral MD
    J Mol Neurosci; 2004; 23(1-2):41-8. PubMed ID: 15126691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2.
    Rosser MF; Grove DE; Chen L; Cyr DM
    Mol Biol Cell; 2008 Nov; 19(11):4570-9. PubMed ID: 18716059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
    Namkung W; Kim KH; Lee MG
    Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery.
    Metzger MB; Maurer MJ; Dancy BM; Michaelis S
    J Biol Chem; 2008 Nov; 283(47):32302-16. PubMed ID: 18812321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome.
    Shiber A; Ravid T
    Biomolecules; 2014 Jul; 4(3):704-24. PubMed ID: 25036888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein.
    Huyer G; Piluek WF; Fansler Z; Kreft SG; Hochstrasser M; Brodsky JL; Michaelis S
    J Biol Chem; 2004 Sep; 279(37):38369-78. PubMed ID: 15252059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.