These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24609065)
1. Connectivity changes underlying neurofeedback training of visual cortex activity. Scharnowski F; Rosa MJ; Golestani N; Hutton C; Josephs O; Weiskopf N; Rees G PLoS One; 2014; 9(3):e91090. PubMed ID: 24609065 [TBL] [Abstract][Full Text] [Related]
2. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback. Koush Y; Meskaldji DE; Pichon S; Rey G; Rieger SW; Linden DE; Van De Ville D; Vuilleumier P; Scharnowski F Cereb Cortex; 2017 Feb; 27(2):1193-1202. PubMed ID: 26679192 [TBL] [Abstract][Full Text] [Related]
3. Visual imagery during real-time fMRI neurofeedback from occipital and superior parietal cortex. Andersson P; Ragni F; Lingnau A Neuroimage; 2019 Oct; 200():332-343. PubMed ID: 31247298 [TBL] [Abstract][Full Text] [Related]
4. Connectivity-based neurofeedback: dynamic causal modeling for real-time fMRI. Koush Y; Rosa MJ; Robineau F; Heinen K; W Rieger S; Weiskopf N; Vuilleumier P; Van De Ville D; Scharnowski F Neuroimage; 2013 Nov; 81():422-430. PubMed ID: 23668967 [TBL] [Abstract][Full Text] [Related]
5. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training. Robineau F; Rieger SW; Mermoud C; Pichon S; Koush Y; Van De Ville D; Vuilleumier P; Scharnowski F Neuroimage; 2014 Oct; 100():1-14. PubMed ID: 24904993 [TBL] [Abstract][Full Text] [Related]
6. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions. Banca P; Sousa T; Duarte IC; Castelo-Branco M J Neural Eng; 2015 Dec; 12(6):066003. PubMed ID: 26401684 [TBL] [Abstract][Full Text] [Related]
7. Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study. Kauffmann L; Chauvin A; Pichat C; Peyrin C Brain Cogn; 2015 Oct; 99():46-56. PubMed ID: 26232267 [TBL] [Abstract][Full Text] [Related]
8. Dynamic reconfiguration of human brain functional networks through neurofeedback. Haller S; Kopel R; Jhooti P; Haas T; Scharnowski F; Lovblad KO; Scheffler K; Van De Ville D Neuroimage; 2013 Nov; 81():243-252. PubMed ID: 23684872 [TBL] [Abstract][Full Text] [Related]
9. Data-driven tensor independent component analysis for model-based connectivity neurofeedback. Koush Y; Masala N; Scharnowski F; Van De Ville D Neuroimage; 2019 Jan; 184():214-226. PubMed ID: 30176368 [TBL] [Abstract][Full Text] [Related]
10. Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study. Kober SE; Witte M; Stangl M; Väljamäe A; Neuper C; Wood G Clin Neurophysiol; 2015 Jan; 126(1):82-95. PubMed ID: 24794517 [TBL] [Abstract][Full Text] [Related]
11. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity. Paret C; Ruf M; Gerchen MF; Kluetsch R; Demirakca T; Jungkunz M; Bertsch K; Schmahl C; Ende G Neuroimage; 2016 Jan; 125():182-188. PubMed ID: 26481674 [TBL] [Abstract][Full Text] [Related]
12. Differential magnetic resonance neurofeedback modulations across extrinsic (visual) and intrinsic (default-mode) nodes of the human cortex. Harmelech T; Friedman D; Malach R J Neurosci; 2015 Feb; 35(6):2588-95. PubMed ID: 25673851 [TBL] [Abstract][Full Text] [Related]
13. Maintenance of Voluntary Self-regulation Learned through Real-Time fMRI Neurofeedback. Robineau F; Meskaldji DE; Koush Y; Rieger SW; Mermoud C; Morgenthaler S; Van De Ville D; Vuilleumier P; Scharnowski F Front Hum Neurosci; 2017; 11():131. PubMed ID: 28386224 [TBL] [Abstract][Full Text] [Related]
14. Neurofeedback of core language network nodes modulates connectivity with the default-mode network: A double-blind fMRI neurofeedback study on auditory verbal hallucinations. Zweerings J; Hummel B; Keller M; Zvyagintsev M; Schneider F; Klasen M; Mathiak K Neuroimage; 2019 Apr; 189():533-542. PubMed ID: 30703519 [TBL] [Abstract][Full Text] [Related]
15. Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. Ramot M; Grossman S; Friedman D; Malach R Proc Natl Acad Sci U S A; 2016 Apr; 113(17):E2413-20. PubMed ID: 27071084 [TBL] [Abstract][Full Text] [Related]
16. Neurofeedback learning for mental practice rather than repetitive practice improves neural pattern consistency and functional network efficiency in the subsequent mental motor execution. Lee D; Jang C; Park HJ Neuroimage; 2019 Mar; 188():680-693. PubMed ID: 30599191 [TBL] [Abstract][Full Text] [Related]
17. Using real-time fMRI neurofeedback to restore right occipital cortex activity in patients with left visuo-spatial neglect: proof-of-principle and preliminary results. Robineau F; Saj A; Neveu R; Van De Ville D; Scharnowski F; Vuilleumier P Neuropsychol Rehabil; 2019 Apr; 29(3):339-360. PubMed ID: 28385053 [TBL] [Abstract][Full Text] [Related]
19. Using connectivity-based real-time fMRI neurofeedback to modulate attentional and resting state networks in people with high trait anxiety. Morgenroth E; Saviola F; Gilleen J; Allen B; Lührs M; W Eysenck M; Allen P Neuroimage Clin; 2020; 25():102191. PubMed ID: 32044712 [TBL] [Abstract][Full Text] [Related]
20. Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data. Deshpande G; Hu X; Stilla R; Sathian K Neuroimage; 2008 May; 40(4):1807-14. PubMed ID: 18329290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]