These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24609466)

  • 21. Common cortical responses evoked by appearance, disappearance and change of the human face.
    Tanaka E; Inui K; Kida T; Kakigi R
    BMC Neurosci; 2009 Apr; 10():38. PubMed ID: 19389259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resting-State Neural Firing Rate Is Linked to Cardiac-Cycle Duration in the Human Cingulate and Parahippocampal Cortices.
    Kim K; Ladenbauer J; Babo-Rebelo M; Buot A; Lehongre K; Adam C; Hasboun D; Lambrecq V; Navarro V; Ostojic S; Tallon-Baudry C
    J Neurosci; 2019 May; 39(19):3676-3686. PubMed ID: 30842247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow Endogenous Fluctuations in Cortical fMRI Signals Correlate with Reduced Performance in a Visual Detection Task and Are Suppressed by Spatial Attention.
    Bressler DW; Rokem A; Silver MA
    J Cogn Neurosci; 2020 Jan; 32(1):85-99. PubMed ID: 31560268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speed of mental addition in an abacus expert, estimated by eye movements and neural activities.
    Hamada T; Iwaki S
    Percept Mot Skills; 2012 Aug; 115(1):1-6. PubMed ID: 23033740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frontal cortical control of posterior sensory and association cortices through the claustrum.
    White MG; Mathur BN
    Brain Struct Funct; 2018 Jul; 223(6):2999-3006. PubMed ID: 29623428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping.
    Hopf JM; Mangun GR
    Clin Neurophysiol; 2000 Jul; 111(7):1241-57. PubMed ID: 10880800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatio-temporal patterns of cognitive control revealed with simultaneous electroencephalography and functional magnetic resonance imaging.
    Hinault T; Larcher K; Zazubovits N; Gotman J; Dagher A
    Hum Brain Mapp; 2019 Jan; 40(1):80-97. PubMed ID: 30259592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attentional control: temporal relationships within the fronto-parietal network.
    Shomstein S; Kravitz DJ; Behrmann M
    Neuropsychologia; 2012 May; 50(6):1202-10. PubMed ID: 22386880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural Correlates of Spatial Attention and Target Detection in a Multi-Target Environment.
    de Haan B; Bither M; Brauer A; Karnath HO
    Cereb Cortex; 2015 Aug; 25(8):2321-31. PubMed ID: 24642422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.
    Papadelis C; Arfeller C; Erla S; Nollo G; Cattaneo L; Braun C
    Brain Res; 2016 Nov; 1650():252-266. PubMed ID: 27641995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events.
    Burgess N; Maguire EA; Spiers HJ; O'Keefe J
    Neuroimage; 2001 Aug; 14(2):439-53. PubMed ID: 11467917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.
    Kim YJ; Tsai JJ; Ojemann J; Verghese P
    J Neurosci; 2017 May; 37(19):4942-4953. PubMed ID: 28411268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tickling expectations: neural processing in anticipation of a sensory stimulus.
    Carlsson K; Petrovic P; Skare S; Petersson KM; Ingvar M
    J Cogn Neurosci; 2000 Jul; 12(4):691-703. PubMed ID: 10936920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Common cortical network for first and second pain.
    Forss N; Raij TT; Seppä M; Hari R
    Neuroimage; 2005 Jan; 24(1):132-42. PubMed ID: 15588604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention.
    Small DM; Gitelman DR; Gregory MD; Nobre AC; Parrish TB; Mesulam MM
    Neuroimage; 2003 Mar; 18(3):633-41. PubMed ID: 12667840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural response to the visual familiarity of faces.
    Gobbini MI; Haxby JV
    Brain Res Bull; 2006 Dec; 71(1-3):76-82. PubMed ID: 17113931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Audiovisual integration of letters in the human brain.
    Raij T; Uutela K; Hari R
    Neuron; 2000 Nov; 28(2):617-25. PubMed ID: 11144369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frontoparietal and Cingulo-opercular Networks Play Dissociable Roles in Control of Working Memory.
    Wallis G; Stokes M; Cousijn H; Woolrich M; Nobre AC
    J Cogn Neurosci; 2015 Oct; 27(10):2019-34. PubMed ID: 26042457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.