These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 24609623)
1. Retinal vessel diameter assessment in papilledema by semi-automated analysis of SLO images: feasibility and reliability. Moss HE; Treadwell G; Wanek J; DeLeon S; Shahidi M Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2049-54. PubMed ID: 24609623 [TBL] [Abstract][Full Text] [Related]
2. Comparing diabetic retinopathy lesions in scanning laser ophthalmoscopy and colour fundus photography. Nghiem AZ; Nderitu P; Lukic M; Khatun M; Largan R; Kortuem K; Balaskas K; Sim D Acta Ophthalmol; 2019 Dec; 97(8):e1035-e1040. PubMed ID: 31286663 [TBL] [Abstract][Full Text] [Related]
3. Comparison of subjective and objective methods to determine the retinal arterio-venous ratio using fundus photography. Heitmar R; Kalitzeos AA; Patel SR; Prabhu-Das D; Cubbidge RP J Optom; 2015; 8(4):252-7. PubMed ID: 26386537 [TBL] [Abstract][Full Text] [Related]
4. Variability of Retinal Vessel Tortuosity Measurements Using a Semiautomated Method Applied to Fundus Images in Subjects With Papilledema. Moss HE; Cao J; Wasi M; Feldon SE; Shahidi M Transl Vis Sci Technol; 2021 Dec; 10(14):32. PubMed ID: 34967836 [TBL] [Abstract][Full Text] [Related]
5. Bruch's membrane opening on optical coherence tomography in pediatric papilledema and pseudopapilledema. Thompson AC; Bhatti MT; El-Dairi MA J AAPOS; 2018 Feb; 22(1):38-43.e3. PubMed ID: 29203329 [TBL] [Abstract][Full Text] [Related]
6. Quantification of peripapillary total retinal volume in pseudopapilledema and mild papilledema using spectral-domain optical coherence tomography. Fard MA; Fakhree S; Abdi P; Hassanpoor N; Subramanian PS Am J Ophthalmol; 2014 Jul; 158(1):136-43. PubMed ID: 24727146 [TBL] [Abstract][Full Text] [Related]
7. [New examination methods for macular disorders--application of diagnosis and treatment]. Yoshida A Nippon Ganka Gakkai Zasshi; 2000 Dec; 104(12):899-942. PubMed ID: 11193944 [TBL] [Abstract][Full Text] [Related]
8. Retinal vessel diameter obtained by optical coherence tomography is spared in Parkinson's disease. Gulmez Sevim D; Unlu M; Sonmez S; Gultekin M; Karaca C; Ozturk Oner A Int Ophthalmol; 2019 Apr; 39(4):813-819. PubMed ID: 29492727 [TBL] [Abstract][Full Text] [Related]
9. Optical coherence tomography in papilledema and pseudopapilledema with and without optic nerve head drusen. Bassi ST; Mohana KP Indian J Ophthalmol; 2014 Dec; 62(12):1146-51. PubMed ID: 25579359 [TBL] [Abstract][Full Text] [Related]
10. Retinal Vessel Diameter Changes in COVID-19 Infected Patients. Aşıkgarip N; Temel E; Hızmalı L; Örnek K; Sezgin FM Ocul Immunol Inflamm; 2021 May; 29(4):645-651. PubMed ID: 33497297 [No Abstract] [Full Text] [Related]
11. Retinal location of the preferred retinal locus relative to the fovea in scanning laser ophthalmoscope images. Timberlake GT; Sharma MK; Grose SA; Gobert DV; Gauch JM; Maino JH Optom Vis Sci; 2005 Mar; 82(3):177-85. PubMed ID: 15767869 [TBL] [Abstract][Full Text] [Related]
12. Effect of laser photocoagulation on the retinal vessel diameter in branch and macular vein occlusion. Maár N; Luksch A; Graebe A; Ergun E; Wimpissinger B; Tittl M; Vécsei P; Stur M; Schmetterer L Arch Ophthalmol; 2004 Jul; 122(7):987-91. PubMed ID: 15249362 [TBL] [Abstract][Full Text] [Related]
13. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy. Takayama K; Ooto S; Hangai M; Arakawa N; Oshima S; Shibata N; Hanebuchi M; Inoue T; Yoshimura N PLoS One; 2012; 7(3):e33158. PubMed ID: 22427978 [TBL] [Abstract][Full Text] [Related]
14. Retinal vessel segmentation on SLO image. Xu J; Ishikawa H; Wollstein G; Schuman JS Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2258-61. PubMed ID: 19163149 [TBL] [Abstract][Full Text] [Related]
15. The diameters of the human retinal branch vessels do not change in darkness. Barcsay G; Seres A; Németh J Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3115-8. PubMed ID: 12824259 [TBL] [Abstract][Full Text] [Related]
16. Automated scanning laser ophthalmoscope image montages of retinal diseases. Rivero ME; Bartsch DU; Otto T; Freeman WR Ophthalmology; 1999 Dec; 106(12):2296-300. PubMed ID: 10599660 [TBL] [Abstract][Full Text] [Related]
17. ASSOCIATIONS BETWEEN MACULAR EDEMA AND CIRCULATORY STATUS IN EYES WITH RETINAL VEIN OCCLUSION: An Adaptive Optics Scanning Laser Ophthalmoscopy Study. Iida Y; Muraoka Y; Uji A; Ooto S; Murakami T; Suzuma K; Tsujikawa A; Arichika S; Takahashi A; Miwa Y; Yoshimura N Retina; 2017 Oct; 37(10):1896-1904. PubMed ID: 28033234 [TBL] [Abstract][Full Text] [Related]
18. Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia. Lorentz K; Zayas-Santiago A; Tummala S; Kang Derwent JJ Adv Exp Med Biol; 2008; 614():253-61. PubMed ID: 18290336 [TBL] [Abstract][Full Text] [Related]
19. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. Takayama K; Ooto S; Hangai M; Ueda-Arakawa N; Yoshida S; Akagi T; Ikeda HO; Nonaka A; Hanebuchi M; Inoue T; Yoshimura N Am J Ophthalmol; 2013 May; 155(5):870-81. PubMed ID: 23352341 [TBL] [Abstract][Full Text] [Related]
20. Imaging a child's fundus without dilation using a handheld confocal scanning laser ophthalmoscope. Kelly JP; Weiss AH; Zhou Q; Schmode S; Dreher AW Arch Ophthalmol; 2003 Mar; 121(3):391-6. PubMed ID: 12617711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]