These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24609918)

  • 1. A compact microfluidic system for cell migration studies.
    Wu J; Ouyang L; Wadhawan N; Li J; Zhang M; Liao S; Levin D; Lin F
    Biomed Microdevices; 2014 Aug; 16(4):521-8. PubMed ID: 24609918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in microfluidics-based chemotaxis studies.
    Wu J; Wu X; Lin F
    Lab Chip; 2013 Jul; 13(13):2484-99. PubMed ID: 23712326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics for bacterial chemotaxis.
    Ahmed T; Shimizu TS; Stocker R
    Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An All-on-chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood.
    Yang K; Wu J; Zhu L; Liu Y; Zhang M; Lin F
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics for mammalian cell chemotaxis.
    Kim BJ; Wu M
    Ann Biomed Eng; 2012 Jun; 40(6):1316-27. PubMed ID: 22189490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-scale and microfluidic devices for neurobiology.
    Taylor AM; Jeon NL
    Curr Opin Neurobiol; 2010 Oct; 20(5):640-7. PubMed ID: 20739175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic devices for studying chemotaxis and electrotaxis.
    Li J; Lin F
    Trends Cell Biol; 2011 Aug; 21(8):489-97. PubMed ID: 21665472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in microfluidics for environmental analysis.
    Jokerst JC; Emory JM; Henry CS
    Analyst; 2012 Jan; 137(1):24-34. PubMed ID: 22005445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative observation and imaging of single tumor cell migration and deformation using a multi-gap microfluidic device representing the blood vessel.
    Chaw KC; Manimaran M; Tay FE; Swaminathan S
    Microvasc Res; 2006 Nov; 72(3):153-60. PubMed ID: 17081570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical imaging techniques in microfluidics and their applications.
    Wu J; Zheng G; Lee LM
    Lab Chip; 2012 Oct; 12(19):3566-75. PubMed ID: 22878811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y; Fang Q
    Anal Chim Acta; 2013 Jul; 787():24-35. PubMed ID: 23830418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices.
    DĂ„nmark S; Gladnikoff M; Frisk T; Zelenina M; Mustafa K; Russom A; Finne-Wistrand A
    Biomed Microdevices; 2012 Oct; 14(5):885-93. PubMed ID: 22714394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When microfluidic devices go bad. How does fouling occur in microfluidic devices, and what can be done about it?
    Mukhopadhyay R
    Anal Chem; 2005 Nov; 77(21):429A-432A. PubMed ID: 16285143
    [No Abstract]   [Full Text] [Related]  

  • 19. Microfluidic tools for quantitative studies of eukaryotic chemotaxis.
    Beta C; Bodenschatz E
    Eur J Cell Biol; 2011 Oct; 90(10):811-6. PubMed ID: 21783273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Platform for Studying Chemotaxis of Adhesive Cells Revealed a Gradient-Dependent Migration and Acceleration of Cancer Stem Cells.
    Zou H; Yue W; Yu WK; Liu D; Fong CC; Zhao J; Yang M
    Anal Chem; 2015 Jul; 87(14):7098-108. PubMed ID: 26087892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.