BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24609978)

  • 41. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin.
    Arai T; Yamauchi A; Miura A; Kondo H; Nishimiya Y; Sasaki YC; Tsuda S
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum.
    Kawahara H; Iwanaka Y; Higa S; Muryoi N; Sato M; Honda M; Omura H; Obata H
    Cryo Letters; 2007; 28(1):39-49. PubMed ID: 17369961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins.
    Graether SP; Sykes BD
    Eur J Biochem; 2004 Aug; 271(16):3285-96. PubMed ID: 15291806
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara.
    Huang T; Duman JG
    Plant Mol Biol; 2002 Mar; 48(4):339-50. PubMed ID: 11905961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity.
    Can O; Holland NB
    Bioconjug Chem; 2011 Oct; 22(10):2166-71. PubMed ID: 21905742
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation of an antifreeze peptide from the Antarctic sponge Homaxinella balfourensis.
    Wilkins SP; Blum AJ; Burkepile DE; Rutland TJ; Wierzbicki A; Kelly M; Hamann MT
    Cell Mol Life Sci; 2002 Dec; 59(12):2210-5. PubMed ID: 12568347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Freezing and thawing in Antarctica: characterization of antifreeze protein (AFP) producing microorganisms isolated from King George Island, Antarctica.
    Lopes JC; Veiga VP; Seminiuk B; Santos LOF; Luiz AMC; Fernandes CA; Kinasz CT; Pellizari VH; Duarte RTD
    Braz J Microbiol; 2024 Jun; 55(2):1451-1463. PubMed ID: 38656427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30.
    Park KS; Do H; Lee JH; Park SI; Kim Ej; Kim SJ; Kang SH; Kim HJ
    Cryobiology; 2012 Jun; 64(3):286-96. PubMed ID: 22426061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antifreeze and ice nucleator proteins in terrestrial arthropods.
    Duman JG
    Annu Rev Physiol; 2001; 63():327-57. PubMed ID: 11181959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peptide backbone circularization enhances antifreeze protein thermostability.
    Stevens CA; Semrau J; Chiriac D; Litschko M; Campbell RL; Langelaan DN; Smith SP; Davies PL; Allingham JS
    Protein Sci; 2017 Oct; 26(10):1932-1941. PubMed ID: 28691252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An insight into the molecular basis for convergent evolution in fish antifreeze Proteins.
    Nath A; Chaube R; Subbiah K
    Comput Biol Med; 2013 Aug; 43(7):817-21. PubMed ID: 23746722
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ice-binding site of antifreeze protein irreversibly binds to cell surface for its hypothermic protective function.
    Yang Y; Yamauchi A; Tsuda S; Kuramochi M; Mio K; Sasaki YC; Arai T
    Biochem Biophys Res Commun; 2023 Nov; 682():343-348. PubMed ID: 37837755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth.
    Celik Y; Drori R; Pertaya-Braun N; Altan A; Barton T; Bar-Dolev M; Groisman A; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1309-14. PubMed ID: 23300286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus.
    Cheng J; Hanada Y; Miura A; Tsuda S; Kondo H
    Biochem J; 2016 Nov; 473(21):4011-4026. PubMed ID: 27613857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural basis for the superior activity of the large isoform of snow flea antifreeze protein.
    Mok YF; Lin FH; Graham LA; Celik Y; Braslavsky I; Davies PL
    Biochemistry; 2010 Mar; 49(11):2593-603. PubMed ID: 20158269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12.
    Hashim NH; Bharudin I; Nguong DL; Higa S; Bakar FD; Nathan S; Rabu A; Kawahara H; Illias RM; Najimudin N; Mahadi NM; Murad AM
    Extremophiles; 2013 Jan; 17(1):63-73. PubMed ID: 23132550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast.
    Tyshenko MG; d'Anjou M; Davies PL; Daugulis AJ; Walker VK
    Protein Expr Purif; 2006 May; 47(1):152-61. PubMed ID: 16290006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein engineering of antifreeze proteins reveals that their activity scales with the area of the ice-binding site.
    Scholl CL; Davies PL
    FEBS Lett; 2023 Feb; 597(4):538-546. PubMed ID: 36460826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.