These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24609991)

  • 1. A MEMS-based passive hydrocephalus shunt for body position controlled intracranial pressure regulation.
    Johansson SB; Eklund A; Malm J; Stemme G; Roxhed N
    Biomed Microdevices; 2014 Aug; 16(4):529-36. PubMed ID: 24609991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posture related in-vitro characterization of a flow regulated MEMS CSF valve.
    Tachatos N; Chappel E; Dumont-Fillon D; Meboldt M; Daners MS
    Biomed Microdevices; 2020 Feb; 22(1):21. PubMed ID: 32088807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Delta Valve: a physiologic shunt system.
    Watson DA
    Childs Nerv Syst; 1994 May; 10(4):224-30. PubMed ID: 7923231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is there a reasonable differential indication for different hydrocephalus shunt systems?
    Trost HA
    Childs Nerv Syst; 1995 Apr; 11(4):189-92. PubMed ID: 7621478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of refractory low-pressure hydrocephalus with an active pumping negative-pressure shunt system.
    Kalani MY; Turner JD; Nakaji P
    J Clin Neurosci; 2013 Mar; 20(3):462-6. PubMed ID: 23380444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical study of new types of valve shunts for cerebrospinal fluid.
    Bosio A
    ASAIO Trans; 1991; 37(3):M289-90. PubMed ID: 1751154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-fabricated shunt to mimic arachnoid granulations for the treatment of communicating hydrocephalus.
    Kralick F; Oh J; Medina T; Noh HM
    Acta Neurochir Suppl; 2012; 114():239-42. PubMed ID: 22327701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-switch valve: clinical performance of a new hydrocephalus valve.
    Trost HA; Sprung C; Lanksch W; Stolke D; Miethke C
    Acta Neurochir Suppl; 1998; 71():360-3. PubMed ID: 9779230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?
    Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M
    Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CSF shunt physics: factors influencing inshunt CSF flow.
    Kadowaki C; Hara M; Numoto M; Takeuchi K; Saito I
    Childs Nerv Syst; 1995 Apr; 11(4):203-6. PubMed ID: 7621480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the Effects of Cerebrospinal Fluid Protein Content on the Performance of Differential Pressure Valves and Antisiphon Devices Using a Novel Benchtop Shunting Model.
    Gorelick NL; Serra R; Iyer R; Um R; Grewal A; Monroe A; Antoine H; Beharry K; Cecia A; Kroll F; Ishida W; Perdomo-Pantoja A; Xu R; Loth F; Ye X; Suk I; Tyler B; Bayston R; Luciano MG
    Neurosurgery; 2020 Oct; 87(5):1046-1054. PubMed ID: 32521017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel method for controlling cerebrospinal fluid flow and intracranial pressure by use of a tandem shunt valve system.
    Aihara Y; Kawamata T; Mitsuyama T; Hori T; Okada Y
    Pediatr Neurosurg; 2010; 46(1):12-8. PubMed ID: 20453558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustable antisiphon shunt.
    Sood S; Canady AI; Ham SD
    Childs Nerv Syst; 1999 May; 15(5):246-9. PubMed ID: 10392496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of an electromechanical hydrocephalus shunt--a new approach.
    Elixmann IM; Kwiecien M; Goffin C; Walter M; Misgeld B; Kiefer M; Steudel WI; Radermacher K; Leonhardt S
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2379-88. PubMed ID: 25148657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study.
    Gruber RW; Roehrig B
    J Neurosurg Pediatr; 2010 Jan; 5(1):4-16. PubMed ID: 20043731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.