These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24610379)

  • 1. Accelerations of the waist and lower extremities over a range of gait velocities to aid in activity monitor selection for field-based studies.
    Morrow MM; Hurd WJ; Fortune E; Lugade V; Kaufman KR
    J Appl Biomech; 2014 Aug; 30(4):581-5. PubMed ID: 24610379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of traversed distance in level walking using a single inertial measurement unit attached to the waist.
    Kose A; Cereatti A; Della Croce U
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1125-8. PubMed ID: 22254512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinematic human-walking model for the normal-gait-speed estimation using tri-axial acceleration signals at waist location.
    Hu JS; Sun KC; Cheng CY
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2271-9. PubMed ID: 23529073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.
    Vähä-Ypyä H; Vasankari T; Husu P; Suni J; Sievänen H
    Clin Physiol Funct Imaging; 2015 Jan; 35(1):64-70. PubMed ID: 24393233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of gait kinetics using triaxial accelerometers.
    Fortune E; Morrow MM; Kaufman KR
    J Appl Biomech; 2014 Oct; 30(5):668-74. PubMed ID: 25010675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.
    Yang S; Li Q
    Comput Methods Biomech Biomed Engin; 2012; 15(3):313-22. PubMed ID: 21294007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of center of pressure estimation errors on 3D inverse dynamics solutions during gait at different velocities.
    Camargo-Junior F; Ackermann M; Loss JF; Sacco IC
    J Appl Biomech; 2013 Dec; 29(6):790-7. PubMed ID: 23343751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower and upper extremity loading in nordic walking in comparison with walking and running.
    Hagen M; Hennig EM; Stieldorf P
    J Appl Biomech; 2011 Feb; 27(1):22-31. PubMed ID: 21451179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis.
    Köse A; Cereatti A; Della Croce U
    J Neuroeng Rehabil; 2012 Feb; 9():9. PubMed ID: 22316235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tibial impact accelerations in gait of primary school children: The effect of age and speed.
    Tirosh O; Orland G; Eliakim A; Nemet D; Steinberg N
    Gait Posture; 2017 Sep; 57():265-269. PubMed ID: 28683418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of using tri-axial accelerometers to measure human movement - Part II: Step counts at a wide range of gait velocities.
    Fortune E; Lugade V; Morrow M; Kaufman K
    Med Eng Phys; 2014 Jun; 36(6):659-69. PubMed ID: 24656871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peak impact accelerations during track and treadmill running.
    Bigelow EM; Elvin NG; Elvin AA; Arnoczky SP
    J Appl Biomech; 2013 Oct; 29(5):639-44. PubMed ID: 23182887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower trunk motion and speed-dependence during walking.
    Kavanagh JJ
    J Neuroeng Rehabil; 2009 Apr; 6():9. PubMed ID: 19356256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positioning Commercial Pedometers to Measure Activity of Older Adults with Slow Gait: At the Wrist or at the Waist?
    Ehrler F; Weber C; Lovis C
    Stud Health Technol Inform; 2016; 221():18-22. PubMed ID: 27071868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing adaptive algorithms to measure temporal gait parameters using lower body mounted inertial sensors.
    Patterson MR; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4509-12. PubMed ID: 23366930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait speed and step-count monitor accuracy in community-dwelling older adults.
    Storti KL; Pettee KK; Brach JS; Talkowski JB; Richardson CR; Kriska AM
    Med Sci Sports Exerc; 2008 Jan; 40(1):59-64. PubMed ID: 18091020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of spatio-temporal parameters during unconstrained walking.
    Zijlstra W
    Eur J Appl Physiol; 2004 Jun; 92(1-2):39-44. PubMed ID: 14985994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.