BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24610717)

  • 1. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses.
    Tsai SL; Chiang Y; Wang MH; Chen MK; Jang LS
    Electrophoresis; 2014 Aug; 35(16):2392-400. PubMed ID: 24610717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device.
    Wang MH; Kao MF; Jang LS
    Rev Sci Instrum; 2011 Jun; 82(6):064302. PubMed ID: 21721710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjustable trapping position for single cells using voltage phase-controlled method.
    Wang CC; Lan KC; Chen MK; Wang MH; Jang LS
    Biosens Bioelectron; 2013 Nov; 49():297-304. PubMed ID: 23787359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring.
    Ameri SK; Singh PK; Dokmeci MR; Khademhosseini A; Xu Q; Sonkusale SR
    Biosens Bioelectron; 2014 Apr; 54():462-7. PubMed ID: 24315878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microchip integrating cell array positioning with in situ single-cell impedance measurement.
    Guo X; Zhu R; Zong X
    Analyst; 2015 Oct; 140(19):6571-8. PubMed ID: 26282920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of single-cell trapping and impedance measurement utilizing microwell electrodes.
    Lan KC; Jang LS
    Biosens Bioelectron; 2011 Jan; 26(5):2025-31. PubMed ID: 20970315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy.
    Pliquett U; Schönfeldt M; Barthel A; Frense D; Nacke T; Beckmann D
    Physiol Meas; 2011 Jul; 32(7):927-44. PubMed ID: 21646715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual analyzer for real-time impedance and noise spectroscopy of nanoscale devices.
    Joo MK; Kang P; Kim Y; Kim GT; Kim S
    Rev Sci Instrum; 2011 Mar; 82(3):034702. PubMed ID: 21456771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements.
    Chia-Ling Wei ; Yi-Wen Wang ; Bin-Da Liu
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):442-50. PubMed ID: 24043398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband spectroscopy of dynamic impedances with short chirp pulses.
    Min M; Land R; Paavle T; Parve T; Annus P; Trebbels D
    Physiol Meas; 2011 Jul; 32(7):945-58. PubMed ID: 21646703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation.
    Tucker AS; Fox RM; Sadleir RJ
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):63-70. PubMed ID: 23853280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system.
    Liu J; Qiao X; Wang M; Zhang W; Li G; Lin L
    Rev Sci Instrum; 2014 May; 85(5):055111. PubMed ID: 24880419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level.
    Susloparova A; Koppenhöfer D; Law JK; Vu XT; Ingebrandt S
    Lab Chip; 2015 Feb; 15(3):668-79. PubMed ID: 25412224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric-field driven assembly of live bacterial cell microarrays for rapid phenotypic assessment and cell viability testing.
    Goel M; Verma A; Gupta S
    Biosens Bioelectron; 2018 Jul; 111():159-165. PubMed ID: 29679892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead field theory provides a powerful tool for designing microelectrode array impedance measurements for biological cell detection and observation.
    Böttrich M; Tanskanen JMA; Hyttinen JAK
    Biomed Eng Online; 2017 Jun; 16(1):85. PubMed ID: 28651645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-frequency simultaneous measurement of bioimpedance spectroscopy based on a low crest factor multisine excitation.
    Yang Y; Zhang F; Tao K; Wang L; Wen H; Teng Z
    Physiol Meas; 2015 Mar; 36(3):489-501. PubMed ID: 25679488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.