These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 24610743)
1. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds. Ding X; Janjanam J; Tiwari A; Thompson M; Heiden PA Macromol Biosci; 2014 Jun; 14(6):853-71. PubMed ID: 24610743 [TBL] [Abstract][Full Text] [Related]
2. Peptide-directed self-assembly of functionalized polymeric nanoparticles. Part II: effects of nanoparticle composition on assembly behavior and multiple drug loading ability. Xiang X; Ding X; Moser T; Gao Q; Shokuhfar T; Heiden PA Macromol Biosci; 2015 Apr; 15(4):568-82. PubMed ID: 25476787 [TBL] [Abstract][Full Text] [Related]
3. Thermosensitive nanoparticles self-assembled from PCL-b-PEO-b-PNIPAAm triblock copolymers and their potential for controlled drug release. Sun P; Zhang Y; Shi L; Gan Z Macromol Biosci; 2010 Jun; 10(6):621-31. PubMed ID: 20166233 [TBL] [Abstract][Full Text] [Related]
4. Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells. Zou Z; Liu T; Li J; Li P; Ding Q; Peng G; Zheng Q; Zeng X; Wu Y; Guo X J Biomed Mater Res A; 2014 May; 102(5):1286-93. PubMed ID: 23703883 [TBL] [Abstract][Full Text] [Related]
5. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release. Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721 [TBL] [Abstract][Full Text] [Related]
6. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. Papadimitriou S; Bikiaris D J Control Release; 2009 Sep; 138(2):177-84. PubMed ID: 19446585 [TBL] [Abstract][Full Text] [Related]
7. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Zhang H; Park J; Jiang Y; Woodrow KA Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480 [TBL] [Abstract][Full Text] [Related]
8. Controlled release and entrapment of enantiomers in self-assembling scaffolds composed of beta-sheet peptides. Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T Biomacromolecules; 2009 Dec; 10(12):3266-72. PubMed ID: 19904950 [TBL] [Abstract][Full Text] [Related]
9. Functionalized self-assembling peptide nanofiber hydrogel as a scaffold for rabbit nucleus pulposus cells. Wang B; Wu Y; Shao Z; Yang S; Che B; Sun C; Ma Z; Zhang Y J Biomed Mater Res A; 2012 Mar; 100(3):646-53. PubMed ID: 22213420 [TBL] [Abstract][Full Text] [Related]
10. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207 [TBL] [Abstract][Full Text] [Related]
11. Antifungal nanofibers made by controlled release of sea animal derived peptide. Viana JF; Carrijo J; Freitas CG; Paul A; Alcaraz J; Lacorte CC; Migliolo L; Andrade CA; Falcão R; Santos NC; Gonçalves S; Otero-González AJ; Khademhosseini A; Dias SC; Franco OL Nanoscale; 2015 Apr; 7(14):6238-46. PubMed ID: 25776264 [TBL] [Abstract][Full Text] [Related]
12. Controlled release of insulin from self-assembling nanofiber hydrogel, PuraMatrix™: application for the subcutaneous injection in rats. Nishimura A; Hayakawa T; Yamamoto Y; Hamori M; Tabata K; Seto K; Shibata N Eur J Pharm Sci; 2012 Jan; 45(1-2):1-7. PubMed ID: 22064453 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled Peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. Zhang C; Xue X; Luo Q; Li Y; Yang K; Zhuang X; Jiang Y; Zhang J; Liu J; Zou G; Liang XJ ACS Nano; 2014 Nov; 8(11):11715-23. PubMed ID: 25375351 [TBL] [Abstract][Full Text] [Related]
14. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction. Guo HD; Cui GH; Yang JJ; Wang C; Zhu J; Zhang LS; Jiang J; Shao SJ Biochem Biophys Res Commun; 2012 Jul; 424(1):105-11. PubMed ID: 22732415 [TBL] [Abstract][Full Text] [Related]
15. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. Gelain F; Unsworth LD; Zhang S J Control Release; 2010 Aug; 145(3):231-9. PubMed ID: 20447427 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture. Nagayasu A; Yokoi H; Minaguchi JA; Hosaka YZ; Ueda H; Takehana K J Biomater Appl; 2012 Feb; 26(6):651-65. PubMed ID: 21123284 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications. Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers. Yang Y; Hua C; Dong CM Biomacromolecules; 2009 Aug; 10(8):2310-8. PubMed ID: 19618927 [TBL] [Abstract][Full Text] [Related]
19. Self-assembled peptide beads used as a template for ordered gold nanoparticle superstructures. de Bruyn Ouboter D; Schuster TB; Sigg SJ; Meier WP Colloids Surf B Biointerfaces; 2013 Dec; 112():542-7. PubMed ID: 24099645 [TBL] [Abstract][Full Text] [Related]
20. Confined assembly of asymmetric block-copolymer nanofibers via multiaxial jet electrospinning. Kalra V; Lee JH; Park JH; Marquez M; Joo YL Small; 2009 Oct; 5(20):2323-32. PubMed ID: 19526533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]