These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24610849)
1. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity. Mendes Gde O; Zafra DL; Vassilev NB; Silva IR; Ribeiro JI; Costa MD Appl Environ Microbiol; 2014 May; 80(10):3081-5. PubMed ID: 24610849 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of Aspergillus niger phosphate solubilization by fluoride released from rock phosphate. Mendes Gde O; Vassilev NB; Bonduki VH; da Silva IR; Ribeiro JI; Costa MD Appl Environ Microbiol; 2013 Aug; 79(16):4906-13. PubMed ID: 23770895 [TBL] [Abstract][Full Text] [Related]
3. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1. Xiao C; Zhang H; Fang Y; Chi R Appl Biochem Biotechnol; 2013 Jan; 169(1):123-33. PubMed ID: 23229476 [TBL] [Abstract][Full Text] [Related]
4. Fluoride-tolerant mutants of Aspergillus niger show enhanced phosphate solubilization capacity. Silva Ude C; Mendes Gde O; Silva NM; Duarte JL; Silva IR; Tótola MR; Costa MD PLoS One; 2014; 9(10):e110246. PubMed ID: 25310310 [TBL] [Abstract][Full Text] [Related]
5. Enhanced solubilization of rock phosphate by Penicillium bilaiae in pH-buffered solution culture. Takeda M; Knight JD Can J Microbiol; 2006 Nov; 52(11):1121-9. PubMed ID: 17215904 [TBL] [Abstract][Full Text] [Related]
6. Solubilization of Morocco phosphorite by Aspergillus niger. Bojinova D; Velkova R; Ivanova R Bioresour Technol; 2008 Oct; 99(15):7348-53. PubMed ID: 18468889 [TBL] [Abstract][Full Text] [Related]
7. A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger. Tian D; Wang L; Hu J; Zhang L; Zhou N; Xia J; Xu M; Yusef KK; Wang S; Li Z; Gao H J Microbiol; 2021 Sep; 59(9):819-826. PubMed ID: 34382148 [TBL] [Abstract][Full Text] [Related]
8. Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. Vassileva M; Azcon R; Barea JM; Vassilev N J Biotechnol; 1998 Jul; 63(1):67-72. PubMed ID: 9764483 [TBL] [Abstract][Full Text] [Related]
9. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil. Yin Z; Shi F; Jiang H; Roberts DP; Chen S; Fan B Can J Microbiol; 2015 Dec; 61(12):913-23. PubMed ID: 26469739 [TBL] [Abstract][Full Text] [Related]
10. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Gulati A; Sharma N; Vyas P; Sood S; Rahi P; Pathania V; Prasad R Arch Microbiol; 2010 Nov; 192(11):975-83. PubMed ID: 20821196 [TBL] [Abstract][Full Text] [Related]
11. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Mendes Gde O; da Silva NM; Anastácio TC; Vassilev NB; Ribeiro JI; da Silva IR; Costa MD Microb Biotechnol; 2015 Nov; 8(6):930-9. PubMed ID: 26112323 [TBL] [Abstract][Full Text] [Related]
12. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks. Schneider KD; van Straaten P; de Orduña RM; Glasauer S; Trevors J; Fallow D; Smith PS J Appl Microbiol; 2010 Jan; 108(1):366-74. PubMed ID: 19709342 [TBL] [Abstract][Full Text] [Related]
13. Fungal rock phosphate solubilization using sugarcane bagasse. Mendes GO; Dias CS; Silva IR; Júnior JI; Pereira OL; Costa MD World J Microbiol Biotechnol; 2013 Jan; 29(1):43-50. PubMed ID: 22927013 [TBL] [Abstract][Full Text] [Related]
14. Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Xiao C; Chi R; Li X; Xia M; Xia Z Appl Biochem Biotechnol; 2011 Sep; 165(2):719-27. PubMed ID: 21625871 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains' acidic and chelating exometabolites. Polák F; Urík M; Bujdoš M; Uhlík P; Matúš P J Inorg Biochem; 2018 Apr; 181():162-168. PubMed ID: 28927705 [TBL] [Abstract][Full Text] [Related]
16. New approaches for solubilization of phosphate rocks through solid-state fermentation by optimization of oxalic acid production. Rodrigues NA; Buffo MM; Casciatori FP; Farinas CS Bioresour Technol; 2024 Sep; 408():131165. PubMed ID: 39069142 [TBL] [Abstract][Full Text] [Related]
17. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Bahaloo-Horeh N; Mousavi SM Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532 [TBL] [Abstract][Full Text] [Related]
18. Effects of phosphorus-solubilizing bacteria and biochar application on phosphorus availability and tomato growth under phosphorus stress. Bai K; Wang W; Zhang J; Yao P; Cai C; Xie Z; Luo L; Li T; Wang Z BMC Biol; 2024 Sep; 22(1):211. PubMed ID: 39294668 [TBL] [Abstract][Full Text] [Related]
19. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA. Kobayashi K; Hattori T; Honda Y; Kirimura K J Ind Microbiol Biotechnol; 2014 May; 41(5):749-56. PubMed ID: 24615146 [TBL] [Abstract][Full Text] [Related]
20. The biochemistry of citric acid accumulation by Aspergillus niger. Karaffa L; Sándor E; Fekete E; Szentirmai A Acta Microbiol Immunol Hung; 2001; 48(3-4):429-40. PubMed ID: 11791342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]