These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24610888)

  • 1. A mechanical characterization of polymer scaffolds and films at the macroscale and nanoscale.
    Boffito M; Bernardi E; Sartori S; Ciardelli G; Sassi MP
    J Biomed Mater Res A; 2015 Jan; 103(1):162-9. PubMed ID: 24610888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation.
    Zhu Y; Dong Z; Wejinya UC; Jin S; Ye K
    J Biomech; 2011 Sep; 44(13):2356-61. PubMed ID: 21794867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical testing of electrospun PCL fibers.
    Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML
    Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: Mechanical properties and cytotoxicity.
    Yeganegi M; Kandel RA; Santerre JP
    Acta Biomater; 2010 Oct; 6(10):3847-55. PubMed ID: 20466079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Wet-state" mechanical properties of three-dimensional polyester porous scaffolds.
    Wu L; Zhang J; Jing D; Ding J
    J Biomed Mater Res A; 2006 Feb; 76(2):264-71. PubMed ID: 16265648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of surface microphase structures of poly(urethane urea) biomaterials by nanoscale indentation with AFM.
    Xu LC; Soman P; Runt J; Siedlecki CA
    J Biomater Sci Polym Ed; 2007; 18(4):353-68. PubMed ID: 17540113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of bulk properties of nanofibrous scaffolds from nanomechanical properties of single nanofibers.
    Tan EP; Lim CT
    J Biomed Mater Res A; 2006 Jun; 77(3):526-33. PubMed ID: 16489588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite.
    Thomas V; Dean DR; Jose MV; Mathew B; Chowdhury S; Vohra YK
    Biomacromolecules; 2007 Feb; 8(2):631-7. PubMed ID: 17256900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.
    Zhang X; Li XW; Li JG; Sun XD
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():362-7. PubMed ID: 25063129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.
    Canovic EP; Qing B; Mijailovic AS; Jagielska A; Whitfield MJ; Kelly E; Turner D; Sahin M; Van Vliet KJ
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27684097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of porous EH scaffolds and EH-PEG bilayers.
    Falco EE; Coates EE; Li E; Roth JS; Fisher JP
    J Biomed Mater Res A; 2011 Jun; 97(3):264-71. PubMed ID: 21442727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of mineralized collagen-glycosaminoglycan scaffolds for bone regeneration.
    Kanungo BP; Silva E; Van Vliet K; Gibson LJ
    Acta Biomater; 2008 May; 4(3):490-503. PubMed ID: 18294943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation.
    Welzel PB; Friedrichs J; Grimmer M; Vogler S; Freudenberg U; Werner C
    Adv Healthc Mater; 2014 Nov; 3(11):1849-53. PubMed ID: 24729299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography.
    Schüller-Ravoo S; Feijen J; Grijpma DW
    Macromol Biosci; 2011 Dec; 11(12):1662-71. PubMed ID: 22006829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D
    Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.