These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 24610894)
1. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays. Ni S; Sun L; Ercan B; Liu L; Ziemer K; Webster TJ J Biomed Mater Res B Appl Biomater; 2014 Aug; 102(6):1297-303. PubMed ID: 24610894 [TBL] [Abstract][Full Text] [Related]
2. Cytocompatibility and Bone-Formation Potential of Se-Coated 316L Stainless Steel with Nano-Pit Arrays. Hu H; Cui R; Mei L; Ni S; Sun H; Zhang C; Ni S J Biomed Nanotechnol; 2018 Apr; 14(4):716-724. PubMed ID: 31352945 [TBL] [Abstract][Full Text] [Related]
3. Impact of surface nano-textured stainless steel prepared by focused ion beam on endothelial cell growth. Nazneen F; Schmidt M; McLoughlin E; Petkov N; Herzog G; Arrigan DW; Galvin P J Nanosci Nanotechnol; 2013 Aug; 13(8):5283-90. PubMed ID: 23882755 [TBL] [Abstract][Full Text] [Related]
4. Laser surface modification of 316L stainless steel. Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086 [TBL] [Abstract][Full Text] [Related]
6. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786 [TBL] [Abstract][Full Text] [Related]
7. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Čapek J; Machová M; Fousová M; Kubásek J; Vojtěch D; Fojt J; Jablonská E; Lipov J; Ruml T Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():631-9. PubMed ID: 27612756 [TBL] [Abstract][Full Text] [Related]
8. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel. Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855 [TBL] [Abstract][Full Text] [Related]
9. MC3T3-E1 cell response to stainless steel 316L with different surface treatments. Zhang H; Han J; Sun Y; Huang Y; Zhou M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():22-9. PubMed ID: 26249561 [TBL] [Abstract][Full Text] [Related]
11. [Study on biocompatibility of MIM 316L stainless steel]. Wang G; Zhu S; Li Y; Zhao Y; Zhou K; Huang B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):329-31. PubMed ID: 17591253 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Bordji K; Jouzeau JY; Mainard D; Payan E; Delagoutte JP; Netter P Biomaterials; 1996 Mar; 17(5):491-500. PubMed ID: 8991480 [TBL] [Abstract][Full Text] [Related]
13. Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver-tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications. Alias R; Mahmoodian R; Genasan K; Vellasamy KM; Hamdi Abd Shukor M; Kamarul T Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110304. PubMed ID: 31761210 [TBL] [Abstract][Full Text] [Related]
14. Long-term stability of self-assembled monolayers on 316L stainless steel. Kaufmann CR; Mani G; Marton D; Johnson DM; Agrawal CM Biomed Mater; 2010 Apr; 5(2):25008. PubMed ID: 20339168 [TBL] [Abstract][Full Text] [Related]
15. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity. Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface. Huang Y; Peng G; Chen B; Yong P; Yao N; Yang L; Pirraco RP; Reis RL; Chen J J Biomater Sci Polym Ed; 2018 Feb; 29(3):236-256. PubMed ID: 29171792 [TBL] [Abstract][Full Text] [Related]
17. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents. Zhong Q; Yan J; Qian X; Zhang T; Zhang Z; Li A Colloids Surf B Biointerfaces; 2014 Sep; 121():238-47. PubMed ID: 25016426 [TBL] [Abstract][Full Text] [Related]
18. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film]. Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526 [TBL] [Abstract][Full Text] [Related]
19. Effects of simulated inflammation on the corrosion of 316L stainless steel. Brooks EK; Brooks RP; Ehrensberger MT Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():200-205. PubMed ID: 27987699 [TBL] [Abstract][Full Text] [Related]
20. An electrochemical method for functionalization of a 316L stainless steel surface being used as a stent in coronary surgery: irreversible immobilization of fibronectin for the enhancement of endothelial cell attachment. Harvey J; Bergdahl A; Dadafarin H; Ling L; Davis EC; Omanovic S Biotechnol Lett; 2012 Jun; 34(6):1159-65. PubMed ID: 22361964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]