These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 24611068)
41. The developmental epigenomics toolbox: ChIP-seq and MethylCap-seq profiling of early zebrafish embryos. Bogdanović O; Fernández-Miñán A; Tena JJ; de la Calle-Mustienes E; Gómez-Skarmeta JL Methods; 2013 Aug; 62(3):207-15. PubMed ID: 23624103 [TBL] [Abstract][Full Text] [Related]
42. Profiling DNA Methylation Using Bisulfite Sequencing (BS-Seq). Chen YR; Yu S; Zhong S Methods Mol Biol; 2018; 1675():31-43. PubMed ID: 29052183 [TBL] [Abstract][Full Text] [Related]
43. How to Tackle Challenging ChIP-Seq, with Long-Range Cross-Linking, Using ATRX as an Example. Truch J; Telenius J; Higgs DR; Gibbons RJ Methods Mol Biol; 2018; 1832():105-130. PubMed ID: 30073524 [TBL] [Abstract][Full Text] [Related]
44. BRIF-Seq: Bisulfite-Converted Randomly Integrated Fragments Sequencing at the Single-Cell Level. Li X; Chen L; Zhang Q; Sun Y; Li Q; Yan J Mol Plant; 2019 Mar; 12(3):438-446. PubMed ID: 30639749 [TBL] [Abstract][Full Text] [Related]
45. The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine. Gely-Pernot A; Hao C; Becker E; Stuparevic I; Kervarrec C; Chalmel F; Primig M; Jégou B; Smagulova F BMC Genomics; 2015 Oct; 16():885. PubMed ID: 26518232 [TBL] [Abstract][Full Text] [Related]
46. Not just gene expression: 3D implications of chromatin modifications during sexual plant reproduction. Dukowic-Schulze S; Liu C; Chen C Plant Cell Rep; 2018 Jan; 37(1):11-16. PubMed ID: 29032424 [TBL] [Abstract][Full Text] [Related]
47. Examining female meiocytes of maize by confocal microscopy. Barrell P; Grossniklaus U Methods Mol Biol; 2013; 990():45-52. PubMed ID: 23559201 [TBL] [Abstract][Full Text] [Related]
48. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments. Wu F; Olson BG; Yao J J Vis Exp; 2016 Jan; (107):e53620. PubMed ID: 26862720 [TBL] [Abstract][Full Text] [Related]
49. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes. Chwialkowska K; Korotko U; Kosinska J; Szarejko I; Kwasniewski M Front Plant Sci; 2017; 8():2056. PubMed ID: 29250096 [TBL] [Abstract][Full Text] [Related]
50. CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers. Zhang M; Ma X; Wang C; Li Q; Meyers BC; Springer NM; Walbot V New Phytol; 2021 Mar; 229(5):2984-2997. PubMed ID: 33135165 [TBL] [Abstract][Full Text] [Related]
51. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Statham AL; Robinson MD; Song JZ; Coolen MW; Stirzaker C; Clark SJ Genome Res; 2012 Jun; 22(6):1120-7. PubMed ID: 22466171 [TBL] [Abstract][Full Text] [Related]
52. Data of correlation analysis between the density of H3K4me3 in promoters of genes and gene expression: Data from RNA-seq and ChIP-seq analyses of the murine prefrontal cortex. Reshetnikov VV; Kisaretova PE; Ershov NI; Merkulova TI; Bondar NP Data Brief; 2020 Dec; 33():106365. PubMed ID: 33102649 [TBL] [Abstract][Full Text] [Related]
53. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites. Lefrançois P; Zheng W; Snyder M Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807 [TBL] [Abstract][Full Text] [Related]
54. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq. Bajic M; Maher KA; Deal RB Methods Mol Biol; 2018; 1675():183-201. PubMed ID: 29052193 [TBL] [Abstract][Full Text] [Related]
55. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. van Dijk K; Ding Y; Malkaram S; Riethoven JJ; Liu R; Yang J; Laczko P; Chen H; Xia Y; Ladunga I; Avramova Z; Fromm M BMC Plant Biol; 2010 Nov; 10():238. PubMed ID: 21050490 [TBL] [Abstract][Full Text] [Related]
57. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Mundade R; Ozer HG; Wei H; Prabhu L; Lu T Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472 [TBL] [Abstract][Full Text] [Related]
58. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing. Han BW; Wang W; Zamore PD; Weng Z Bioinformatics; 2015 Feb; 31(4):593-5. PubMed ID: 25342065 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of MeDIP-chip in the context of whole-genome bisulfite sequencing (WGBS-seq) in Arabidopsis. Wardenaar R; Liu H; Colot V; Colomé-Tatché M; Johannes F Methods Mol Biol; 2013; 1067():203-24. PubMed ID: 23975794 [TBL] [Abstract][Full Text] [Related]
60. Preparation of Low-Input and Ligation-Free ChIP-seq Libraries Using Template-Switching Technology. Bolduc N; Lehman AP; Farmer A Curr Protoc Mol Biol; 2016 Oct; 116():7.28.1-7.28.26. PubMed ID: 27723085 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]