These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24611584)

  • 1. Three-input logic gates with potential applications for neuronal imaging.
    Hettie KS; Klockow JL; Glass TE
    J Am Chem Soc; 2014 Apr; 136(13):4877-80. PubMed ID: 24611584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters.
    Klockow JL; Hettie KS; Secor KE; Barman DN; Glass TE
    Chemistry; 2015 Aug; 21(32):11446-51. PubMed ID: 26119241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis.
    Klockow JL; Hettie KS; Glass TE
    ACS Chem Neurosci; 2013 Oct; 4(10):1334-8. PubMed ID: 23926946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Two-Input Fluorescent Logic Gate for Glutamate and Zinc.
    Yin C; Huo F; Cooley NP; Spencer D; Bartholomew K; Barnes CL; Glass TE
    ACS Chem Neurosci; 2017 Jun; 8(6):1159-1162. PubMed ID: 28257176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turn-On Near-Infrared Fluorescent Sensor for Selectively Imaging Serotonin.
    Hettie KS; Glass TE
    ACS Chem Neurosci; 2016 Jan; 7(1):21-5. PubMed ID: 26521705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coumarin-3-aldehyde as a scaffold for the design of tunable PET-modulated fluorescent sensors for neurotransmitters.
    Hettie KS; Glass TE
    Chemistry; 2014 Dec; 20(52):17488-99. PubMed ID: 25346467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc.
    Komatsu K; Urano Y; Kojima H; Nagano T
    J Am Chem Soc; 2007 Nov; 129(44):13447-54. PubMed ID: 17927174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles.
    Hu L; Savy A; Grimaud L; Guille-Collignon M; Lemaître F; Amatore C; Delacotte J
    Biophys Chem; 2019 Feb; 245():1-5. PubMed ID: 30500608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput development of a hybrid-type fluorescent glutamate sensor for analysis of synaptic transmission.
    Takikawa K; Asanuma D; Namiki S; Sakamoto H; Ariyoshi T; Kimpara N; Hirose K
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13439-43. PubMed ID: 25297726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Y-27632 induces calcium-independent glutamate release in rat brain synaptosomes by the mechanism which is distinct from exocytosis].
    Lemeshchenko VV; Pekun TG; Vasim TV; Fedorovich SV
    Biofizika; 2012; 57(3):454-9. PubMed ID: 22873069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementing conventional logic unconventionally: photochromic molecular populations as registers and logic gates.
    Chaplin JC; Russell NA; Krasnogor N
    Biosystems; 2012 Jul; 109(1):35-51. PubMed ID: 22240019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of coumarin-based supramolecular hydrogelators for cell imaging.
    Ji W; Liu G; Xu M; Dou X; Feng C
    Chem Commun (Camb); 2014 Dec; 50(98):15545-8. PubMed ID: 25357251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological evidence for vesicular glutamate release from astrocytes.
    Bergersen LH; Gundersen V
    Neuroscience; 2009 Jan; 158(1):260-5. PubMed ID: 18479831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Exocytosis as the mechanism for neural communication. A view from chromaffin cells].
    Camacho M; Montesinos MS; Machado JD; Borges R
    Rev Neurol; 2003 Feb 15-28; 36(4):355-60. PubMed ID: 12599135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging chemical neurotransmission with genetically encoded fluorescent sensors.
    Liang R; Broussard GJ; Tian L
    ACS Chem Neurosci; 2015 Jan; 6(1):84-93. PubMed ID: 25565280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fluorescent False Neurotransmitter as a Dual Electrofluorescent Probe for Secretory Cell Models.
    Pandard J; Pan N; Ebene DH; Le Saux T; Ait-Yahiatène E; Liu X; Grimaud L; Buriez O; Labbé E; Lemaître F; Guille-Collignon M
    Chempluschem; 2019 Oct; 84(10):1578-1586. PubMed ID: 31943921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent molecular sensors and multi-photon microscopy in brain studies.
    Bakalova R
    Brain Res Bull; 2007 Jun; 73(1-3):150-3. PubMed ID: 17499649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-based aptamer logic gates and their application to multiplex detection.
    Wang L; Zhu J; Han L; Jin L; Zhu C; Wang E; Dong S
    ACS Nano; 2012 Aug; 6(8):6659-66. PubMed ID: 22823159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular multi-level circuits from immobilized DNA-based logic gates.
    Frezza BM; Cockroft SL; Ghadiri MR
    J Am Chem Soc; 2007 Dec; 129(48):14875-9. PubMed ID: 17994734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of pH-responsive fluorescent false neurotransmitters.
    Lee M; Gubernator NG; Sulzer D; Sames D
    J Am Chem Soc; 2010 Jul; 132(26):8828-30. PubMed ID: 20540519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.