BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 24611812)

  • 1. Characteristics of the structural and Johari-Goldstein relaxations in Pd-based metallic glass-forming liquids.
    Qiao J; Casalini R; Pelletier JM; Kato H
    J Phys Chem B; 2014 Apr; 118(13):3720-30. PubMed ID: 24611812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation of bulk metallic glasses studied by mechanical spectroscopy.
    Qiao J; Pelletier JM; Casalini R
    J Phys Chem B; 2013 Oct; 117(43):13658-66. PubMed ID: 24070200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH; Fujita T; Aji DP; Matsuura M; Chen MW
    Nat Commun; 2014; 5():3238. PubMed ID: 24488115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between the activation energy of the Johari-Goldstein beta relaxation and T(g) of glass formers.
    Ngai KL; Capaccioli S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031501. PubMed ID: 15089297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.
    Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules.
    Capaccioli S; Ngai KL; Ancherbak S; Bertoldo M; Ciampalini G; Thayyil MS; Wang LM
    J Chem Phys; 2019 Jul; 151(3):034504. PubMed ID: 31325935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the density scaling of pVT data and transport properties for molecular and ionic liquids.
    López ER; Pensado AS; Fernández J; Harris KR
    J Chem Phys; 2012 Jun; 136(21):214502. PubMed ID: 22697553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interdependence of primary and Johari-Goldstein secondary relaxations in glass-forming systems.
    Kessairi K; Capaccioli S; Prevosto D; Lucchesi M; Sharifi S; Rolla PA
    J Phys Chem B; 2008 Apr; 112(15):4470-3. PubMed ID: 18366219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic understanding of the Johari-Goldstein β relaxation gained from nuclear γ-resonance time-domain-interferometry experiments.
    Ngai KL
    Phys Rev E; 2021 Jul; 104(1-2):015103. PubMed ID: 34412284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting two different interpretations of the dynamics in binary glass forming mixtures.
    Valenti S; Capaccioli S; Ngai KL
    J Chem Phys; 2018 Feb; 148(5):054504. PubMed ID: 29421903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids.
    Jakobsen B; Niss K; Olsen NB
    J Chem Phys; 2005 Dec; 123(23):234511. PubMed ID: 16392935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses.
    Zhu ZG; Li YZ; Wang Z; Gao XQ; Wen P; Bai HY; Ngai KL; Wang WH
    J Chem Phys; 2014 Aug; 141(8):084506. PubMed ID: 25173020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An explanation of the differences in diffusivity of the components of the metallic glass Pd43Cu27Ni10P20.
    Ngai KL; Capaccioli S
    J Chem Phys; 2013 Mar; 138(9):094504. PubMed ID: 23485310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the influence of chain length on the α- and β-relaxations in oligomeric glass formers.
    Ngai KL
    J Chem Phys; 2013 Dec; 139(24):244912. PubMed ID: 24387401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation time dispersions in glass forming metallic liquids and glasses.
    Wang LM; Liu R; Wang WH
    J Chem Phys; 2008 Apr; 128(16):164503. PubMed ID: 18447455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses.
    Yu HB; Richert R; Samwer K
    Sci Adv; 2017 Nov; 3(11):e1701577. PubMed ID: 29159283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.