These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 24611898)
1. Probing kinase activation and substrate specificity with an engineered monomeric IKK2. Hauenstein AV; Rogers WE; Shaul JD; Huang DB; Ghosh G; Huxford T Biochemistry; 2014 Apr; 53(12):2064-73. PubMed ID: 24611898 [TBL] [Abstract][Full Text] [Related]
2. Structurally plastic NEMO and oligomerization prone IKK2 subunits define the behavior of human IKK2:NEMO complexes in solution. Ko MS; Biswas T; Mulero MC; Bobkov AA; Ghosh G; Huxford T Biochim Biophys Acta Proteins Proteom; 2020 Dec; 1868(12):140526. PubMed ID: 32853772 [TBL] [Abstract][Full Text] [Related]
3. Regulatory subunit NEMO promotes polyubiquitin-dependent induction of NF-κB through a targetable second interaction with upstream activator IKK2. Ko MS; Cohen SN; Polley S; Mahata SK; Biswas T; Huxford T; Ghosh G J Biol Chem; 2022 May; 298(5):101864. PubMed ID: 35339487 [TBL] [Abstract][Full Text] [Related]
4. HDX-MS Analysis of Catalytic Activation of IKK2 in the IκB Kinase Complex. Suryajaya W; Biswas T; Shahabi S; Mealka M; Huxford T; Ghosh G Biochemistry; 2024 Sep; 63(18):2323-2334. PubMed ID: 39185716 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of inhibitor of κB kinase β. Xu G; Lo YC; Li Q; Napolitano G; Wu X; Jiang X; Dreano M; Karin M; Wu H Nature; 2011 Apr; 472(7343):325-30. PubMed ID: 21423167 [TBL] [Abstract][Full Text] [Related]
6. A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation. Polley S; Huang DB; Hauenstein AV; Fusco AJ; Zhong X; Vu D; Schröfelbauer B; Kim Y; Hoffmann A; Verma IM; Ghosh G; Huxford T PLoS Biol; 2013; 11(6):e1001581. PubMed ID: 23776406 [TBL] [Abstract][Full Text] [Related]
7. Dual-specific autophosphorylation of kinase IKK2 enables phosphorylation of substrate IκBα through a phosphoenzyme intermediate. Borar P; Biswas T; Chaudhuri A; Huxford T; Chakrabarti S; Ghosh G; Polley S bioRxiv; 2024 Mar; ():. PubMed ID: 37732175 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of serine 68 in the IkappaB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-alpha-induced NF-kappaB activity. Palkowitsch L; Leidner J; Ghosh S; Marienfeld RB J Biol Chem; 2008 Jan; 283(1):76-86. PubMed ID: 17977820 [TBL] [Abstract][Full Text] [Related]
9. Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex. Fujita H; Rahighi S; Akita M; Kato R; Sasaki Y; Wakatsuki S; Iwai K Mol Cell Biol; 2014 Apr; 34(7):1322-35. PubMed ID: 24469399 [TBL] [Abstract][Full Text] [Related]
10. Kaposi's sarcoma associated herpesvirus encoded viral FLICE inhibitory protein K13 activates NF-κB pathway independent of TRAF6, TAK1 and LUBAC. Matta H; Gopalakrishnan R; Graham C; Tolani B; Khanna A; Yi H; Suo Y; Chaudhary PM PLoS One; 2012; 7(5):e36601. PubMed ID: 22590573 [TBL] [Abstract][Full Text] [Related]
11. NEMO-binding domains of both IKKalpha and IKKbeta regulate IkappaB kinase complex assembly and classical NF-kappaB activation. Solt LA; Madge LA; May MJ J Biol Chem; 2009 Oct; 284(40):27596-608. PubMed ID: 19666475 [TBL] [Abstract][Full Text] [Related]
12. The human IKKbeta subunit kinase domain displays CK2-like phosphorylation specificity. Shaul JD; Farina A; Huxford T Biochem Biophys Res Commun; 2008 Sep; 374(3):592-7. PubMed ID: 18657515 [TBL] [Abstract][Full Text] [Related]
13. Regulation of IkappaB kinase (IKK) complex by IKKgamma-dependent phosphorylation of the T-loop and C terminus of IKKbeta. Schomer-Miller B; Higashimoto T; Lee YK; Zandi E J Biol Chem; 2006 Jun; 281(22):15268-76. PubMed ID: 16597623 [TBL] [Abstract][Full Text] [Related]
14. TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases. Drube S; Weber F; Göpfert C; Loschinski R; Rothe M; Boelke F; Diamanti MA; Löhn T; Ruth J; Schütz D; Häfner N; Greten FR; Stumm R; Hartmann K; Krämer OH; Dudeck A; Kamradt T Oncotarget; 2015 Oct; 6(30):28833-50. PubMed ID: 26353931 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the bovine IkappaB kinases (IKK)alpha and IKKbeta, the regulatory subunit NEMO and their substrate IkappaBalpha. Rottenberg S; Schmuckli-Maurer J; Grimm S; Heussler VT; Dobbelaere DA Gene; 2002 Oct; 299(1-2):293-300. PubMed ID: 12459277 [TBL] [Abstract][Full Text] [Related]
16. Regulation of I(kappa)B kinase complex by phosphorylation of (gamma)-binding domain of I(kappa)B kinase (beta) by Polo-like kinase 1. Higashimoto T; Chan N; Lee YK; Zandi E J Biol Chem; 2008 Dec; 283(51):35354-67. PubMed ID: 18957422 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of a human IκB kinase β asymmetric dimer. Liu S; Misquitta YR; Olland A; Johnson MA; Kelleher KS; Kriz R; Lin LL; Stahl M; Mosyak L J Biol Chem; 2013 Aug; 288(31):22758-67. PubMed ID: 23792959 [TBL] [Abstract][Full Text] [Related]
19. Human T-cell lymphotropic virus type 1 tax induction of biologically Active NF-kappaB requires IkappaB kinase-1-mediated phosphorylation of RelA/p65. O'Mahony AM; Montano M; Van Beneden K; Chen LF; Greene WC J Biol Chem; 2004 Apr; 279(18):18137-45. PubMed ID: 14963024 [TBL] [Abstract][Full Text] [Related]
20. The kinetics of association and phosphorylation of IkappaB isoforms by IkappaB kinase 2 correlate with their cellular regulation in human endothelial cells. Heilker R; Freuler F; Vanek M; Pulfer R; Kobel T; Peter J; Zerwes HG; Hofstetter H; Eder J Biochemistry; 1999 May; 38(19):6231-8. PubMed ID: 10320352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]