These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24611910)
1. Nanosized carbon black combined with Ni2O3 as "universal" catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors. Wen X; Chen X; Tian N; Gong J; Liu J; Rümmeli MH; Chu PK; Mijiwska E; Tang T Environ Sci Technol; 2014 Apr; 48(7):4048-55. PubMed ID: 24611910 [TBL] [Abstract][Full Text] [Related]
2. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272 [TBL] [Abstract][Full Text] [Related]
3. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors. Guo CX; Chitre AA; Lu X Phys Chem Chem Phys; 2014 Mar; 16(10):4672-8. PubMed ID: 24469241 [TBL] [Abstract][Full Text] [Related]
4. Preparation of high quality carbon nanotubes by catalytic pyrolysis of waste plastics using FeNi-based catalyst. Meng W; Xing B; Cheng S; Nie Y; Zeng H; Qu X; Xu B; Zhang C; Yu J; Won Hong S Waste Manag; 2024 Dec; 189():11-22. PubMed ID: 39142246 [TBL] [Abstract][Full Text] [Related]
5. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co Wang S; Zhang X; Huang J; Chen J Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380 [TBL] [Abstract][Full Text] [Related]
6. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Gao L; Li R; Sui X; Li R; Chen C; Chen Q Environ Sci Technol; 2014 Sep; 48(17):10191-7. PubMed ID: 25089346 [TBL] [Abstract][Full Text] [Related]
7. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659 [TBL] [Abstract][Full Text] [Related]
8. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes. Seo DH; Yick S; Han ZJ; Fang JH; Ostrikov KK ChemSusChem; 2014 Aug; 7(8):2317-24. PubMed ID: 24828784 [TBL] [Abstract][Full Text] [Related]
9. Carbon nanotubes synthesis over coal ash based catalysts using polypropylene waste via CVD process: Influence of catalyst and reaction temperature. Chitriv SP; Saini V; Ratna D; P VR J Environ Manage; 2024 Aug; 366():121881. PubMed ID: 39018861 [TBL] [Abstract][Full Text] [Related]
10. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products. Zhang Y; Nahil MA; Wu C; Williams PT Environ Technol; 2017 Nov; 38(22):2889-2897. PubMed ID: 28074718 [TBL] [Abstract][Full Text] [Related]
11. Low-temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Fang C; Zhang D; Cai S; Zhang L; Huang L; Li H; Maitarad P; Shi L; Gao R; Zhang J Nanoscale; 2013 Oct; 5(19):9199-207. PubMed ID: 23928911 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes. You B; Li N; Zhu H; Zhu X; Yang J ChemSusChem; 2013 Mar; 6(3):474-80. PubMed ID: 23417925 [TBL] [Abstract][Full Text] [Related]
13. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis. Wang C; Wang Y; Graser J; Zhao R; Gao F; O'Connell MJ ACS Nano; 2013 Dec; 7(12):11156-65. PubMed ID: 24274705 [TBL] [Abstract][Full Text] [Related]
14. 3 D Network-Structured Crumpled Graphene/Carbon Nanotube/Polyaniline Composites for Supercapacitors. Jo EH; Jang HD; Chang H; Kim SK; Choi JH; Lee CM ChemSusChem; 2017 May; 10(10):2210-2217. PubMed ID: 28383820 [TBL] [Abstract][Full Text] [Related]
15. In situ supported MnO(x)-CeO(x) on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Zhang D; Zhang L; Shi L; Fang C; Li H; Gao R; Huang L; Zhang J Nanoscale; 2013 Feb; 5(3):1127-36. PubMed ID: 23282798 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. Raymundo-Piñero E; Cadek M; Wachtler M; Béguin F ChemSusChem; 2011 Jul; 4(7):943-9. PubMed ID: 21302364 [TBL] [Abstract][Full Text] [Related]
18. Polyolefin-derived substrate-grown carbon nanotubes as binder-free electrode for hydrogen evolution in alkaline media. Wu X; Tu WH; Veksha A; Chen W; Lisak G Chemosphere; 2024 Feb; 349():140769. PubMed ID: 38000550 [TBL] [Abstract][Full Text] [Related]
19. Cost-Effective Hierarchical Catalysts for Promoting Hydrogen Release from Complex Hydrides. Yang CH; Hsu CP; Lee SL; Wang KW; Chang JK ChemSusChem; 2015 Aug; 8(16):2713-8. PubMed ID: 26150091 [TBL] [Abstract][Full Text] [Related]
20. In situ growth of carbon nanotubes on Ni/MgO: a facile preparation of efficient catalysts for the production of synthetic natural gas from syngas. Fan MT; Lin JD; Zhang HB; Liao DW Chem Commun (Camb); 2015 Nov; 51(86):15720-3. PubMed ID: 26365211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]