These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24612604)

  • 1. Compression of high-density EMG signals for trapezius and gastrocnemius muscles.
    Itiki C; Furuie SS; Merletti R
    Biomed Eng Online; 2014 Mar; 13(1):25. PubMed ID: 24612604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-density surface EMG maps from upper-arm and forearm muscles.
    Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional compression of surface electromyographic signals using column-correlation sorting and image encoders.
    Costa MV; Carvalho JL; Berger PA; Zaghetto A; da Rocha AF; Nascimento FA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():428-31. PubMed ID: 19963967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression of EMG signals with wavelet transform and artificial neural networks.
    Berger Pde A; Nascimento FA; do Carmo JC; da Rocha AF
    Physiol Meas; 2006 Jun; 27(6):457-65. PubMed ID: 16603798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression of electromyographic signals using image compression techniques.
    Costa MV; Berger Pde A; da Rocha AF; de Carvalho JL; Nascimento FA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2948-51. PubMed ID: 19163324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compression of multidimensional biomedical signals with spatial and temporal codebook-excited linear prediction.
    Carotti ES; De Martin JC; Merletti R; Farina D
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2604-10. PubMed ID: 19643696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of electromyographic signals from monopolar current and potential amplifiers derived from a penniform muscle, the gastrocnemius medialis.
    von Tscharner V; Maurer C; Ruf F; Nigg BM
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1044-51. PubMed ID: 23938250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA.
    Abbaspour S; Lindén M; Gholamhosseini H
    Stud Health Technol Inform; 2015; 211():91-7. PubMed ID: 25980853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression of surface EMG signals with algebraic code excited linear prediction.
    Carotti E; De Martin JC; Merletti R; Farina D
    Med Eng Phys; 2007 Mar; 29(2):253-8. PubMed ID: 16675283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms.
    Muceli S; Jiang N; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):623-33. PubMed ID: 24132017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task.
    Samani A; Srinivasan D; Mathiassen SE; Madeleine P
    Exp Brain Res; 2017 Feb; 235(2):389-400. PubMed ID: 27743011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-EMG Signal Compression in One-Dimensional and Two-Dimensional Approaches.
    Trabuco MH; Costa MVC; Macchiavello B; de O Nascimento FA
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1104-1113. PubMed ID: 29969404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects.
    Farina D; Gazzoni M; Merletti R
    J Electromyogr Kinesiol; 2003 Aug; 13(4):319-32. PubMed ID: 12832163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions.
    Sacco IC; Gomes AA; Otuzi ME; Pripas D; Onodera AN
    J Neurosci Methods; 2009 May; 180(1):133-7. PubMed ID: 19427540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Periodic Voluntary Interventions on Trapezius Activation and Fatigue During Light Upper Limb Activity.
    Kim D; Nicoletti C; Soedirdjo SDH; Baghi R; Garcia MG; Läubli T; Wild P; Botter A; Martin BJ
    Hum Factors; 2023 Nov; 65(7):1491-1505. PubMed ID: 34875887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A convenient method to reduce crosstalk in surface EMG. Cobb Award-winning article, 2001.
    van Vugt JP; van Dijk JG
    Clin Neurophysiol; 2001 Apr; 112(4):583-92. PubMed ID: 11275529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myoelectric signal compression using zero-trees of wavelet coefficients.
    Norris JA; Englehart KB; Lovely DF
    Med Eng Phys; 2003 Nov; 25(9):739-46. PubMed ID: 14519346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standardising surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle.
    Farina D; Madeleine P; Graven-Nielsen T; Merletti R; Arendt-Nielsen L
    Eur J Appl Physiol; 2002 Apr; 86(6):469-78. PubMed ID: 11944093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy and Performance Analysis of Lossless Compression Algorithms for Wireless EMG Sensors.
    Biagetti G; Crippa P; Falaschetti L; Mansour A; Turchetti C
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.
    Roman-Liu D; Konarska M
    J Electromyogr Kinesiol; 2009 Oct; 19(5):864-74. PubMed ID: 18590966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.