These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 24613041)
1. Retention modeling and method development in hydrophilic interaction chromatography. Tyteca E; Périat A; Rudaz S; Desmet G; Guillarme D J Chromatogr A; 2014 Apr; 1337():116-27. PubMed ID: 24613041 [TBL] [Abstract][Full Text] [Related]
2. Possibilities of retention modeling and computer assisted method development in supercritical fluid chromatography. Tyteca E; Desfontaine V; Desmet G; Guillarme D J Chromatogr A; 2015 Feb; 1381():219-28. PubMed ID: 25601318 [TBL] [Abstract][Full Text] [Related]
3. Systematic comparison of sensitivity between hydrophilic interaction liquid chromatography and reversed phase liquid chromatography coupled with mass spectrometry. Periat A; Boccard J; Veuthey JL; Rudaz S; Guillarme D J Chromatogr A; 2013 Oct; 1312():49-57. PubMed ID: 24034137 [TBL] [Abstract][Full Text] [Related]
4. Use of individual retention modeling for gradient optimization in hydrophilic interaction chromatography: separation of nucleobases and nucleosides. Tyteca E; Guillarme D; Desmet G J Chromatogr A; 2014 Nov; 1368():125-31. PubMed ID: 25441348 [TBL] [Abstract][Full Text] [Related]
5. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography. Kensert A; Collaerts G; Efthymiadis K; Desmet G; Cabooter D J Chromatogr A; 2021 Feb; 1638():461900. PubMed ID: 33485027 [TBL] [Abstract][Full Text] [Related]
6. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography. Kensert A; Desmet G; Cabooter D J Chromatogr A; 2024 Jan; 1713():464570. PubMed ID: 38101304 [TBL] [Abstract][Full Text] [Related]
7. Applicability of retention modelling in hydrophilic-interaction liquid chromatography for algorithmic optimization programs with gradient-scanning techniques. Pirok BWJ; Molenaar SRA; van Outersterp RE; Schoenmakers PJ J Chromatogr A; 2017 Dec; 1530():104-111. PubMed ID: 29146427 [TBL] [Abstract][Full Text] [Related]
9. Generic approach to the method development of intact protein separations using hydrophobic interaction chromatography. Tyteca E; De Vos J; Tassi M; Cook K; Liu X; Kaal E; Eeltink S J Sep Sci; 2018 Mar; 41(5):1017-1024. PubMed ID: 29178450 [TBL] [Abstract][Full Text] [Related]
10. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures. Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585 [TBL] [Abstract][Full Text] [Related]
11. Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms. van Schaick G; Pirok BWJ; Haselberg R; Somsen GW; Gargano AFG J Chromatogr A; 2019 Aug; 1598():67-76. PubMed ID: 31104847 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Aral H; Çelik KS; Altındağ R; Aral T Talanta; 2017 Nov; 174():703-714. PubMed ID: 28738646 [TBL] [Abstract][Full Text] [Related]
13. Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins. Tyteca E; De Vos J; Vankova N; Cesla P; Desmet G; Eeltink S J Sep Sci; 2016 Apr; 39(7):1249-57. PubMed ID: 26829155 [TBL] [Abstract][Full Text] [Related]
14. On the inherent data fitting problems encountered in modeling retention behavior of analytes with dual retention mechanism. Tyteca E; Desmet G J Chromatogr A; 2015 Jul; 1403():81-95. PubMed ID: 26044381 [TBL] [Abstract][Full Text] [Related]
15. Advancing HIC method development: Retention-time modeling and tuning selectivity with ternary mobile-phase systems. Ewonde Ewonde R; Molenaar SRA; Broeckhoven K; Eeltink S J Chromatogr A; 2024 Aug; 1730():465133. PubMed ID: 38996515 [TBL] [Abstract][Full Text] [Related]
16. Optimized selection of liquid chromatography conditions for wide range analysis of natural compounds. Periat A; Guillarme D; Veuthey JL; Boccard J; Moco S; Barron D; Grand-Guillaume Perrenoud A J Chromatogr A; 2017 Jun; 1504():91-104. PubMed ID: 28521953 [TBL] [Abstract][Full Text] [Related]
17. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry. Xiong X; Liu Y Talanta; 2016 Apr; 150():493-502. PubMed ID: 26838435 [TBL] [Abstract][Full Text] [Related]
18. Prediction of gradient retention data for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides. Vaňková N; Česla P J Chromatogr A; 2017 Feb; 1485():82-89. PubMed ID: 28108080 [TBL] [Abstract][Full Text] [Related]
19. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography. Aydoğan C; El Rassi Z J Chromatogr A; 2016 May; 1445():55-61. PubMed ID: 27059399 [TBL] [Abstract][Full Text] [Related]
20. Hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents for the separation of nucleosides and nucleotide mono-, di- and triphosphates. Mateos-Vivas M; Rodríguez-Gonzalo E; García-Gómez D; Carabias-Martínez R J Chromatogr A; 2015 Oct; 1414():129-37. PubMed ID: 26341591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]