BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24613297)

  • 1. Homologous recombination contributes to the repair of zinc-finger-nuclease induced double strand breaks in pig primary cells and facilitates recombination with exogenous DNA.
    Klymiuk N; Fezert P; Wünsch A; Kurome M; Kessler B; Wolf E
    J Biotechnol; 2014 May; 177():74-81. PubMed ID: 24613297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and testing of zinc finger nucleases for use in mammalian cells.
    Porteus M
    Methods Mol Biol; 2008; 435():47-61. PubMed ID: 18370067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating zinc finger nucleases to manipulate the genome in a site-specific manner using a modular-assembly approach.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top93. PubMed ID: 21123434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency homologous recombination in plants mediated by zinc-finger nucleases.
    Wright DA; Townsend JA; Winfrey RJ; Irwin PA; Rajagopal J; Lonosky PM; Hall BD; Jondle MD; Voytas DF
    Plant J; 2005 Nov; 44(4):693-705. PubMed ID: 16262717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted genome editing in pluripotent stem cells using zinc-finger nucleases.
    Bobis-Wozowicz S; Osiak A; Rahman SH; Cathomen T
    Methods; 2011 Apr; 53(4):339-46. PubMed ID: 21185378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases.
    Carroll D; Beumer KJ; Morton JJ; Bozas A; Trautman JK
    Methods Mol Biol; 2008; 435():63-77. PubMed ID: 18370068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining.
    Singer M; Marshall J; Heiss K; Mair GR; Grimm D; Mueller AK; Frischknecht F
    Genome Biol; 2015 Nov; 16():249. PubMed ID: 26573820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene targeting using zinc finger nucleases.
    Porteus MH; Carroll D
    Nat Biotechnol; 2005 Aug; 23(8):967-73. PubMed ID: 16082368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Custom-designed zinc finger nucleases: what is next?
    Wu J; Kandavelou K; Chandrasegaran S
    Cell Mol Life Sci; 2007 Nov; 64(22):2933-44. PubMed ID: 17763826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclusion of homologous DNA in nuclease-mediated gene targeting facilitates a higher incidence of bi-allelically modified cells.
    Beaton BP; Kwon DN; Choi YJ; Kim JH; Samuel MS; Benne JA; Wells KD; Lee K; Kim JH; Prather RS
    Xenotransplantation; 2015; 22(5):379-90. PubMed ID: 26381494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells.
    Morton J; Davis MW; Jorgensen EM; Carroll D
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16370-5. PubMed ID: 17060623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient endogenous human gene correction using designed zinc-finger nucleases.
    Urnov FD; Miller JC; Lee YL; Beausejour CM; Rock JM; Augustus S; Jamieson AC; Porteus MH; Gregory PD; Holmes MC
    Nature; 2005 Jun; 435(7042):646-51. PubMed ID: 15806097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly efficient site-specific integration strategy using combination of homologous recombination and the ΦC31 integrase.
    Ou H; Huang Y; Ma Q; Ren Z; Huang S; Zeng F; Zeng Y
    J Biotechnol; 2013 Sep; 167(4):427-32. PubMed ID: 23942381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells.
    So A; Le Guen T; Lopez BS; Guirouilh-Barbat J
    FEBS J; 2017 Aug; 284(15):2324-2344. PubMed ID: 28244221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating zinc finger nucleases using a modular-assembly approach.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.prot5530. PubMed ID: 21123417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical parameters for genome editing using zinc finger nucleases.
    Camenisch TD; Brilliant MH; Segal DJ
    Mini Rev Med Chem; 2008 Jun; 8(7):669-76. PubMed ID: 18537722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes.
    Ranjha L; Howard SM; Cejka P
    Chromosoma; 2018 Jun; 127(2):187-214. PubMed ID: 29327130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination.
    Johnson RD; Liu N; Jasin M
    Nature; 1999 Sep; 401(6751):397-9. PubMed ID: 10517641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing a three-finger zinc finger nuclease using a GFP reporter system.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.prot5531. PubMed ID: 21123418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.