BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24613413)

  • 1. Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation.
    Blackburn JS; Liu S; Wilder JL; Dobrinski KP; Lobbardi R; Moore FE; Martinez SA; Chen EY; Lee C; Langenau DM
    Cancer Cell; 2014 Mar; 25(3):366-78. PubMed ID: 24613413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukemia propagating cells Akt up.
    Gutierrez A; Roderick JE; Kelliher MA
    Cancer Cell; 2014 Mar; 25(3):263-5. PubMed ID: 24651006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency.
    Blackburn JS; Liu S; Raiser DM; Martinez SA; Feng H; Meeker ND; Gentry J; Neuberg D; Look AT; Ramaswamy S; Bernards A; Trede NS; Langenau DM
    Leukemia; 2012 Sep; 26(9):2069-78. PubMed ID: 22538478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels.
    Bressanin D; Evangelisti C; Ricci F; Tabellini G; Chiarini F; Tazzari PL; Melchionda F; Buontempo F; Pagliaro P; Pession A; McCubrey JA; Martelli AM
    Oncotarget; 2012 Aug; 3(8):811-23. PubMed ID: 22885370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fishing for insight into leukemia relapse.
    Harrington M
    Lab Anim (NY); 2014 Apr; 43(5):151. PubMed ID: 24751838
    [No Abstract]   [Full Text] [Related]  

  • 6. PI3K/AKT/mTORC1 and MEK/ERK signaling in T-cell acute lymphoblastic leukemia: new options for targeted therapy.
    Martelli AM; Tabellini G; Ricci F; Evangelisti C; Chiarini F; Bortul R; McCubrey JA; Manzoli FA
    Adv Biol Regul; 2012 Jan; 52(1):214-27. PubMed ID: 21983557
    [No Abstract]   [Full Text] [Related]  

  • 7. Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia.
    Gutierrez A; Grebliunaite R; Feng H; Kozakewich E; Zhu S; Guo F; Payne E; Mansour M; Dahlberg SE; Neuberg DS; den Hertog J; Prochownik EV; Testa JR; Harris M; Kanki JP; Look AT
    J Exp Med; 2011 Aug; 208(8):1595-603. PubMed ID: 21727187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triple Akt inhibition as a new therapeutic strategy in T-cell acute lymphoblastic leukemia.
    Cani A; Simioni C; Martelli AM; Zauli G; Tabellini G; Ultimo S; McCubrey JA; Capitani S; Neri LM
    Oncotarget; 2015 Mar; 6(9):6597-610. PubMed ID: 25788264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Glucocorticoid Resistance in Pediatric T-cell Acute Lymphoblastic Leukemia by Increasing BIM Expression with the PI3K/mTOR Inhibitor BEZ235.
    Hall CP; Reynolds CP; Kang MH
    Clin Cancer Res; 2016 Feb; 22(3):621-32. PubMed ID: 26080839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential.
    Neri LM; Cani A; Martelli AM; Simioni C; Junghanss C; Tabellini G; Ricci F; Tazzari PL; Pagliaro P; McCubrey JA; Capitani S
    Leukemia; 2014 Apr; 28(4):739-48. PubMed ID: 23892718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.
    Siska PJ; van der Windt GJ; Kishton RJ; Cohen S; Eisner W; MacIver NJ; Kater AP; Weinberg JB; Rathmell JC
    J Immunol; 2016 Sep; 197(6):2532-40. PubMed ID: 27511728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia.
    Badura S; Tesanovic T; Pfeifer H; Wystub S; Nijmeijer BA; Liebermann M; Falkenburg JH; Ruthardt M; Ottmann OG
    PLoS One; 2013; 8(11):e80070. PubMed ID: 24244612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapamycin interacts synergistically with idarubicin to induce T-leukemia cell apoptosis in vitro and in a mesenchymal stem cell simulated drug-resistant microenvironment via Akt/mammalian target of rapamycin and extracellular signal-related kinase signaling pathways.
    Wu KN; Zhao YM; He Y; Wang BS; Du KL; Fu S; Hu KM; Zhang LF; Liu LZ; Hu YX; Wang YJ; Huang H
    Leuk Lymphoma; 2014 Mar; 55(3):668-76. PubMed ID: 23741975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-myeloma activity of Akt inhibition is linked to the activation status of PI3K/Akt and MEK/ERK pathway.
    Ramakrishnan V; Kimlinger T; Haug J; Painuly U; Wellik L; Halling T; Rajkumar SV; Kumar S
    PLoS One; 2012; 7(11):e50005. PubMed ID: 23185517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis.
    Mi W; Ye Q; Liu S; She QB
    Oncotarget; 2015 Jun; 6(16):13962-77. PubMed ID: 25961827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell cycle-dependent activity of the novel dual PI3K-MTORC1/2 inhibitor NVP-BGT226 in acute leukemia.
    Kampa-Schittenhelm KM; Heinrich MC; Akmut F; Rasp KH; Illing B; Döhner H; Döhner K; Schittenhelm MM
    Mol Cancer; 2013 May; 12():46. PubMed ID: 23705826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperactivation of mTORC1 and mTORC2 by multiple oncogenic events causes addiction to eIF4E-dependent mRNA translation in T-cell leukemia.
    Schwarzer A; Holtmann H; Brugman M; Meyer J; Schauerte C; Zuber J; Steinemann D; Schlegelberger B; Li Z; Baum C
    Oncogene; 2015 Jul; 34(27):3593-604. PubMed ID: 25241901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly distinct models of zebrafish Myc-induced B cell leukemia.
    Borga C; Foster CA; Iyer S; Garcia SP; Langenau DM; Frazer JK
    Leukemia; 2019 Feb; 33(2):559-562. PubMed ID: 30573774
    [No Abstract]   [Full Text] [Related]  

  • 19. The antileukemia roles of PP242 alone or in combination with daunorubicin in acute leukemia.
    Shi F; Yang X; Gong Y; Shi R; Yang X; Naren D; Wu J
    Anticancer Drugs; 2015 Apr; 26(4):410-21. PubMed ID: 25535978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting lactate dehydrogenase A (LDHA) exerts antileukemic effects on T-cell acute lymphoblastic leukemia.
    Yu H; Yin Y; Yi Y; Cheng Z; Kuang W; Li R; Zhong H; Cui Y; Yuan L; Gong F; Wang Z; Li H; Peng H; Zhang G
    Cancer Commun (Lond); 2020 Oct; 40(10):501-517. PubMed ID: 32820611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.