BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 24613514)

  • 41. Monte-Carlo simulation of a slot-scanning digital mammography system for tomosynthesis.
    Kulkarni M; Dendere R; Nicolls F; Douglas TS
    J Xray Sci Technol; 2016; 24(2):191-206. PubMed ID: 27002901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detective quantum efficiency measured as a function of energy for two full-field digital mammography systems.
    Marshall NW
    Phys Med Biol; 2009 May; 54(9):2845-61. PubMed ID: 19384004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of backscatter factors in breast tomosynthesis using MCNPX simulations and measurements.
    Baptista M; Di Maria S; Figueira C; Orvalho L; Vaz P
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):325-30. PubMed ID: 25836681
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of x-ray spectra in digital mammography through Monte Carlo simulations.
    Cunha DM; Tomal A; Poletti ME
    Phys Med Biol; 2012 Apr; 57(7):1919-35. PubMed ID: 22421418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of breast compression on mass conspicuity in digital mammography.
    Saunders RS; Samei E
    Med Phys; 2008 Oct; 35(10):4464-73. PubMed ID: 18975694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monte Carlo study on optimal breast voxel resolution for dosimetry estimates in digital breast tomosynthesis.
    Fedon C; Rabin C; Caballo M; Diaz O; García E; Rodríguez-Ruiz A; González-Sprinberg GA; Sechopoulos I
    Phys Med Biol; 2018 Dec; 64(1):015003. PubMed ID: 30524034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Digital breast tomosynthesis: Dose and image quality assessment.
    Maldera A; De Marco P; Colombo PE; Origgi D; Torresin A
    Phys Med; 2017 Jan; 33():56-67. PubMed ID: 28010921
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data.
    Bouwman RW; van Engen RE; Young KC; den Heeten GJ; Broeders MJ; Schopphoven S; Jeukens CR; Veldkamp WJ; Dance DR
    Phys Med Biol; 2015 Oct; 60(20):7893-907. PubMed ID: 26407015
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison between objective and subjective image quality measurements for a full field digital mammography system.
    Marshall NW
    Phys Med Biol; 2006 May; 51(10):2441-63. PubMed ID: 16675862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental investigation of the dose and image quality characteristics of a digital mammography imaging system.
    Huda W; Sajewicz AM; Ogden KM; Dance DR
    Med Phys; 2003 Mar; 30(3):442-8. PubMed ID: 12674245
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: a simulation study with an anthropomorphic breast phantom.
    Liu X; Lai CJ; Whitman GJ; Geiser WR; Shen Y; Yi Y; Shaw CC
    Med Phys; 2011 Dec; 38(12):6489-501. PubMed ID: 22149832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective detective quantum efficiency for two mammography systems: measurement and comparison against established metrics.
    Salvagnini E; Bosmans H; Struelens L; Marshall NW
    Med Phys; 2013 Oct; 40(10):101916. PubMed ID: 24089918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 'In vivo' average glandular dose evaluation: one-to-one comparison between digital breast tomosynthesis and full-field digital mammography.
    Cavagnetto F; Taccini G; Rosasco R; Bampi R; Calabrese M; Tagliafico A
    Radiat Prot Dosimetry; 2013 Nov; 157(1):53-61. PubMed ID: 23734057
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radiation dose with digital breast tomosynthesis compared to digital mammography: per-view analysis.
    Gennaro G; Bernardi D; Houssami N
    Eur Radiol; 2018 Feb; 28(2):573-581. PubMed ID: 28819862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparisons of glandular breast dose between digital mammography, tomosynthesis and breast CT based on anthropomorphic patient-derived breast phantoms.
    Sarno A; Mettivier G; Bliznakova K; Hernandez AM; Boone JM; Russo P
    Phys Med; 2022 May; 97():50-58. PubMed ID: 35395535
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Can compression be reduced for breast tomosynthesis? Monte carlo study on mass and microcalcification conspicuity in tomosynthesis.
    Saunders RS; Samei E; Lo JY; Baker JA
    Radiology; 2009 Jun; 251(3):673-82. PubMed ID: 19474373
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anisotropic imaging performance in breast tomosynthesis.
    Badano A; Kyprianou IS; Jennings RJ; Sempau J
    Med Phys; 2007 Nov; 34(11):4076-91. PubMed ID: 18074617
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The impact on lesion detection via a multi-vendor study: A phantom-based comparison of digital mammography, digital breast tomosynthesis, and synthetic mammography.
    Vancoillie L; Cockmartin L; Marshall N; Bosmans H
    Med Phys; 2021 Oct; 48(10):6270-6292. PubMed ID: 34407213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comprehensive assessment of image quality in synthetic and digital mammography: a quantitative comparison.
    Barca P; Lamastra R; Aringhieri G; Tucciariello RM; Traino A; Fantacci ME
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):1141-1152. PubMed ID: 31728938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality.
    Samei E; Saunders RS
    Phys Med Biol; 2011 Oct; 56(19):6359-78. PubMed ID: 21908902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.