BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24613676)

  • 1. Structural alterations of hemoglobin and myoglobin by glyoxal: a comparative study.
    Banerjee S; Chakraborti AS
    Int J Biol Macromol; 2014 May; 66():311-8. PubMed ID: 24613676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Pentosidine Cross-Linking in Myoglobin by Glyoxal: Detection of Fluorescent Advanced Glycation End Product.
    Banerjee S
    J Fluoresc; 2017 Jul; 27(4):1213-1219. PubMed ID: 28299531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glyoxal-induced modification enhances stability of hemoglobin and lowers iron-mediated oxidation reactions of the heme protein: An in vitro study.
    Banerjee S
    Int J Biol Macromol; 2018 Feb; 107(Pt A):494-501. PubMed ID: 28888546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylglyoxal modification enhances the stability of hemoglobin and lowers its iron-mediated oxidation reactions: An in vitro study.
    Banerjee S; Chakraborti AS
    Int J Biol Macromol; 2017 Feb; 95():1159-1168. PubMed ID: 27825993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Glyoxal Modification on a Critical Arginine Residue (Arg-31α) of Hemoglobin: Physiological Implications of Advanced Glycated end Product an
    Banerjee S
    Protein Pept Lett; 2020; 27(8):770-781. PubMed ID: 31774041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyglyoxal administration induces modification of hemoglobin in experimental rats: An in vivo study.
    Banerjee S
    J Photochem Photobiol B; 2017 Feb; 167():82-88. PubMed ID: 28043003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylglyoxal-induced modification causes aggregation of myoglobin.
    Banerjee S; Maity S; Chakraborti AS
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 155():1-10. PubMed ID: 26554310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass Spectrometric Analysis of Glyoxal and Methylglyoxal-Induced Modifications in Human Hemoglobin from Poorly Controlled Type 2 Diabetes Mellitus Patients.
    Chen HJ; Chen YC; Hsiao CF; Chen PF
    Chem Res Toxicol; 2015 Dec; 28(12):2377-89. PubMed ID: 26517015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyoxal administration induces formation of high molecular weight aggregates of hemoglobin exhibiting amyloidal nature in experimental rats: An in vivo study.
    Banerjee S; Chakraborti AS
    Int J Biol Macromol; 2016 Dec; 93(Pt A):805-813. PubMed ID: 27645921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins.
    Zeng J; Davies MJ
    Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tandem mass spectrometry for the study of glyoxal-derived advanced glycation end-products (AGEs) in peptides.
    Lopez-Clavijo AF; Duque-Daza CA; O'Connor PB
    Rapid Commun Mass Spectrom; 2014 Jan; 28(1):25-32. PubMed ID: 24285387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Terminal pyrazinones: a new class of peptide-bound advanced glycation end-products.
    Krause R; Kühn J; Penndorf I; Knoll K; Henle T
    Amino Acids; 2004 Aug; 27(1):9-18. PubMed ID: 15309567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between Glyoxal-Induced DNA Cross-Links and Hemoglobin Modifications in Human Blood Measured by Mass Spectrometry.
    Chen HC; Liu CT; Li YJ
    Chem Res Toxicol; 2019 Jan; 32(1):179-189. PubMed ID: 30507124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical and mass spectrometry based characterization of methylglyoxal-modified myoglobin: Role of advanced glycation end products in inducing protein structural alterations.
    Banerjee S
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2165-2172. PubMed ID: 34774865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of advanced glycation end products: mass changes in correlation to side chain modifications.
    Schmitt A; Gasic-Milenkovic J; Schmitt J
    Anal Biochem; 2005 Nov; 346(1):101-6. PubMed ID: 16168380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-enzymatic glycation induces structural modifications of myoglobin.
    Roy A; Sil R; Chakraborti AS
    Mol Cell Biochem; 2010 May; 338(1-2):105-14. PubMed ID: 20091095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intact glycation end products containing carboxymethyl-lysine and glyoxal lysine dimer obtained from synthetic collagen model peptide.
    Yamada H; Sasaki T; Niwa S; Oishi T; Murata M; Kawakami T; Aimoto S
    Bioorg Med Chem Lett; 2004 Nov; 14(22):5677-80. PubMed ID: 15482946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylglyoxal-induced modifications of hemoglobin: structural and functional characteristics.
    Bose T; Bhattacherjee A; Banerjee S; Chakraborti AS
    Arch Biochem Biophys; 2013 Jan; 529(2):99-104. PubMed ID: 23232081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro study on structural alteration of myoglobin by methylglyoxal.
    Banerjee S; Chakraborti AS
    Protein J; 2013 Mar; 32(3):216-22. PubMed ID: 23504526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products.
    Iram A; Alam T; Khan JM; Khan TA; Khan RH; Naeem A
    PLoS One; 2013; 8(8):e72075. PubMed ID: 23991043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.