These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 24613759)

  • 1. Early development of polyphonic sound encoding and the high voice superiority effect.
    Marie C; Trainor LJ
    Neuropsychologia; 2014 May; 57():50-8. PubMed ID: 24613759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of simultaneous pitch encoding: infants show a high voice superiority effect.
    Marie C; Trainor LJ
    Cereb Cortex; 2013 Mar; 23(3):660-9. PubMed ID: 22419678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic encoding of polyphonic melodies in musicians and nonmusicians.
    Fujioka T; Trainor LJ; Ross B; Kakigi R; Pantev C
    J Cogn Neurosci; 2005 Oct; 17(10):1578-92. PubMed ID: 16269098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.
    Trainor LJ; Marie C; Bruce IC; Bidelman GM
    Hear Res; 2014 Feb; 308():60-70. PubMed ID: 23916754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maturation of cortical mismatch responses to occasional pitch change in early infancy: effects of presentation rate and magnitude of change.
    He C; Hotson L; Trainor LJ
    Neuropsychologia; 2009 Jan; 47(1):218-29. PubMed ID: 18722392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms.
    Hove MJ; Marie C; Bruce IC; Trainor LJ
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10383-8. PubMed ID: 24982142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory pre-attentive processing of Chinese tones.
    Yang LJ; Cao KL; Wei CG; Liu YZ
    Chin Med J (Engl); 2008 Dec; 121(23):2429-33. PubMed ID: 19102963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in emotional tone and instrumental timbre are reflected by the mismatch negativity.
    Goydke KN; Altenmüller E; Möller J; Münte TF
    Brain Res Cogn Brain Res; 2004 Nov; 21(3):351-9. PubMed ID: 15511651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural representation of a melodic motif: Effects of polyphonic contexts.
    Huberth M; Fujioka T
    Brain Cogn; 2017 Feb; 111():144-155. PubMed ID: 27940303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musical rhythm and pitch: A differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex.
    Lelo-de-Larrea-Mancera ES; Rodríguez-Agudelo Y; Solís-Vivanco R
    Neuropsychologia; 2017 Jun; 100():44-50. PubMed ID: 28389366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical representations sensitive to the number of perceived auditory objects emerge between 2 and 4 months of age: electrophysiological evidence.
    Folland NA; Butler BE; Payne JE; Trainor LJ
    J Cogn Neurosci; 2015 May; 27(5):1060-7. PubMed ID: 25436670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mismatch negativity to pitch contours is influenced by language experience.
    Chandrasekaran B; Krishnan A; Gandour JT
    Brain Res; 2007 Jan; 1128(1):148-56. PubMed ID: 17125749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological Correlates of Absolute Pitch in a Passive Auditory Oddball Paradigm: a Direct Replication Attempt.
    Greber M; Rogenmoser L; Elmer S; Jäncke L
    eNeuro; 2018; 5(6):. PubMed ID: 30637328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Event-related brain potentials to change in the frequency and temporal structure of sounds in typically developing 5-6-year-old children.
    Ervast L; Hämäläinen JA; Zachau S; Lohvansuu K; Heinänen K; Veijola M; Heikkinen E; Suominen K; Luotonen M; Lehtihalmes M; Leppänen PH
    Int J Psychophysiol; 2015 Dec; 98(3 Pt 1):413-25. PubMed ID: 26342552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: an EEG study.
    Kühnis J; Elmer S; Meyer M; Jäncke L
    Neuropsychologia; 2013 Jul; 51(8):1608-18. PubMed ID: 23664833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus.
    Tervaniemi M; Kruck S; De Baene W; Schröger E; Alter K; Friederici AD
    Eur J Neurosci; 2009 Oct; 30(8):1636-42. PubMed ID: 19821835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal digital filtering versus difference waves on the mismatch negativity in an uninterrupted sound paradigm.
    Kalyakin I; Gonzalez N; Joutsensalo J; Huttunen T; Kaartinen J; Lyytinen H
    Dev Neuropsychol; 2007; 31(3):429-52. PubMed ID: 17559333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential processing of terminal tone parts within structured and non-structured tones.
    Weise A; Müller D; Grimm S; Rübsamen R; Schröger E
    Neurosci Lett; 2007 Jun; 421(2):163-7. PubMed ID: 17570584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.