BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24614110)

  • 21. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems.
    Woodworth-Jefcoats PA; Polovina JJ; Drazen JC
    Glob Chang Biol; 2017 Mar; 23(3):1000-1008. PubMed ID: 27545818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decadal decline of dominant copepod species in the North Sea is associated with ocean warming: Importance of marine heatwaves.
    Semmouri I; De Schamphelaere KAC; Mortelmans J; Mees J; Asselman J; Janssen CR
    Mar Pollut Bull; 2023 Aug; 193():115159. PubMed ID: 37329739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Comparison of mesozooplankton communities in North Channel and North Branch of Yangtze River Estuary].
    Gao Q; Xu ZL; Zhung P
    Ying Yong Sheng Tai Xue Bao; 2008 Sep; 19(9):2049-55. PubMed ID: 19102323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenological changes in the Northwestern Mediterranean copepods Centropages typicus and Temora stylifera linked to climate forcing.
    Molinero JC; Ibanez F; Souissi S; Chifflet M; Nival P
    Oecologia; 2005 Oct; 145(4):640-9. PubMed ID: 15965753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate change jeopardizes the persistence of freshwater zooplankton by reducing both habitat suitability and demographic resilience.
    Pinceel T; Buschke F; Weckx M; Brendonck L; Vanschoenwinkel B
    BMC Ecol; 2018 Jan; 18(1):2. PubMed ID: 29361977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing zooplankton variance in the late 1990s unveils hydroclimate modifications in the Balearic Sea, Western Mediterranean.
    Fernández de Puelles ML; Molinero JC
    Mar Environ Res; 2013 May; 86():76-80. PubMed ID: 23433612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zooplankton indicator-based assessment in relation to site location and abiotic factors: a case study from the Gulf of Riga.
    Labuce A; Dimante-Deimantovica I; Tunens J; Strake S
    Environ Monit Assess; 2020 Jan; 192(2):147. PubMed ID: 31997068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatio-temporal variation of biotic factors underpins contemporary range dynamics of congeners.
    Naujokaitis-Lewis I; Fortin MJ
    Glob Chang Biol; 2016 Mar; 22(3):1201-13. PubMed ID: 26716759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatio-temporal variability of copepod abundance along the 20 °S monitoring transect in the Northern Benguela upwelling system from 2005 to 2011.
    Bode M; Kreiner A; van der Plas AK; Louw DC; Horaeb R; Auel H; Hagen W
    PLoS One; 2014; 9(5):e97738. PubMed ID: 24844305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal Variability of Zooplankton (2000-2013) in the Levantine Sea: Significant Changes Associated to the 2005-2010 EMT-like Event?
    Ouba A; Abboud-Abi Saab M; Stemmann L
    PLoS One; 2016; 11(7):e0158484. PubMed ID: 27459093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal.
    D'Ambrosio M; Molinero JC; Azeiteiro UM; Pardal MA; Primo AL; Nyitrai D; Marques SC
    Mar Environ Res; 2016 Sep; 120():103-10. PubMed ID: 27494188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of habitat heterogeneity on zooplankton assembly in a temperate river-floodplain system.
    Galir Balkić A; Ternjej I; Bogut I
    Environ Monit Assess; 2018 Feb; 190(3):143. PubMed ID: 29450746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of Sprattus sprattus phalericus (Risso, 1827) and zooplankton near the Black Sea redoxcline.
    Melnikov V; Pollehne F; Minkina N; Melnik L
    J Fish Biol; 2021 Oct; 99(4):1393-1402. PubMed ID: 34259352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abiotic and biotic drivers of temporal dynamics in the spatial heterogeneity of zooplankton communities across lakes in recovery from eutrophication.
    Fu H; Özkan K; Yuan G; Johansson LS; Søndergaard M; Lauridsen TL; Jeppesen E
    Sci Total Environ; 2021 Jul; 778():146368. PubMed ID: 34030386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Habitat size modulates the influence of heterogeneity on species richness patterns in a model zooplankton community.
    Schuler MS; Chase JM; Knight TM
    Ecology; 2017 Jun; 98(6):1651-1659. PubMed ID: 28369846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding long-term changes in species abundance using a niche-based approach.
    Helaouët P; Beaugrand G; Edwards M
    PLoS One; 2013; 8(11):e79186. PubMed ID: 24265757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural habitat change, commercial fishing, climate, and dispersal interact to restructure an Alaskan fish metacommunity.
    Westley PA; Schindler DE; Quinn TP; Ruggerone GT; Hilborn R
    Oecologia; 2010 Jun; 163(2):471-84. PubMed ID: 20033215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seasonal diversity dynamics of a boreal zooplankton community under climate impact.
    Bellier E; Engen S; Jensen TC
    Oecologia; 2022 May; 199(1):139-152. PubMed ID: 35471618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies.
    Celewicz-Gołdyn S; Kuczyńska-Kippen N
    PLoS One; 2017; 12(5):e0177317. PubMed ID: 28472138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.