These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 24614160)
21. Molecular microevolution and epigenetic patterns of the long non-coding gene H19 show its potential function in pig domestication and breed divergence. Li C; Wang X; Cai H; Fu Y; Luan Y; Wang W; Xiang H; Li C BMC Evol Biol; 2016 Apr; 16():87. PubMed ID: 27107967 [TBL] [Abstract][Full Text] [Related]
22. Pathogen presence in feral pigs and their movement around two commercial piggeries in Queensland, Australia. Pearson HE; Toribio JA; Hernandez-Jover M; Marshall D; Lapidge SJ Vet Rec; 2014 Mar; 174(13):325. PubMed ID: 24572722 [TBL] [Abstract][Full Text] [Related]
23. The prevalence, organ distribution and fertility of cystic echinoccosis in feral pigs in tropical North Queensland, Australia. Lidetul D; Hutchinson GW Onderstepoort J Vet Res; 2007 Mar; 74(1):73-9. PubMed ID: 17708154 [TBL] [Abstract][Full Text] [Related]
24. Evaluating the risk of pathogen transmission from wild animals to domestic pigs in Australia. Pearson HE; Toribio JLML; Lapidge SJ; Hernández-Jover M Prev Vet Med; 2016 Jan; 123():39-51. PubMed ID: 26711303 [TBL] [Abstract][Full Text] [Related]
25. Efficacy and risks from a modified sodium nitrite toxic bait for wild pigs. Snow NP; Wishart JD; Foster JA; Staples LD; VerCauteren KC Pest Manag Sci; 2021 Apr; 77(4):1616-1625. PubMed ID: 33200879 [TBL] [Abstract][Full Text] [Related]
26. Characterizing feral swine movement across the contiguous United States using neural networks and genetic data. Giglio RM; Bowden CF; Brook RK; Piaggio AJ; Smyser TJ Mol Ecol; 2024 Sep; 33(17):e17489. PubMed ID: 39148259 [TBL] [Abstract][Full Text] [Related]
27. Interpopulation and intrapopulation maternal lineage genetics of the Lanyu pig (Sus scrofa) by analysis of mitochondrial cytochrome b and control region sequences. Jiang YN; Wu CY; Huang CY; Chu HP; Ke MW; Kung MS; Li KY; Wang CH; Li SH; Wang Y; Ju YT J Anim Sci; 2008 Oct; 86(10):2461-70. PubMed ID: 18344290 [TBL] [Abstract][Full Text] [Related]
28. Climate variability, socio-ecological factors and dengue transmission in tropical Queensland, Australia: A Bayesian spatial analysis. Akter R; Hu W; Gatton M; Bambrick H; Cheng J; Tong S Environ Res; 2021 Apr; 195():110285. PubMed ID: 33027631 [TBL] [Abstract][Full Text] [Related]
29. Detecting mitochondrial signatures of selection in wild Tibetan pigs and domesticated pigs. Li M; Jin L; Ma J; Tian S; Li R; Li X Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):747-52. PubMed ID: 24810064 [TBL] [Abstract][Full Text] [Related]
30. Cytochrome b based genetic differentiation of Indian wild pig (Sus scrofa cristatus) and domestic pig (Sus scrofa domestica) and its use in wildlife forensics. Gupta SK; Kumar A; Hussain SA; Vipin ; Singh L Sci Justice; 2013 Jun; 53(2):220-2. PubMed ID: 23601732 [TBL] [Abstract][Full Text] [Related]
31. Patterns of differentiation among wild rabbit populations Oryctolagus cuniculus L. in arid and semiarid ecosystems of north-eastern Australia. Fuller SJ; Wilson JC; Mather PB Mol Ecol; 1997 Feb; 6(2):145-53. PubMed ID: 9061941 [TBL] [Abstract][Full Text] [Related]
32. Identification of high-risk contact areas between feral pigs and outdoor-raised pig operations in California: Implications for disease transmission in the wildlife-livestock interface. Patterson L; Belkhiria J; Martínez-López B; Pires AFA PLoS One; 2022; 17(6):e0270500. PubMed ID: 35763526 [TBL] [Abstract][Full Text] [Related]
33. Genetic diversity in wild (Sus scrofa scrofa) and domestic (Sus scrofa domestica) pigs and their hybrids based on polymorphism of a fragment of the D-loop region in the mitochondrial DNA. Grossi SF; Lui JF; Garcia JE; Meirelles FV Genet Mol Res; 2006 Oct; 5(4):564-8. PubMed ID: 17183469 [TBL] [Abstract][Full Text] [Related]
34. Limited genetic differentiation among wild Oryctolagus cuniculus L. (rabbit) populations in arid eastern Australia. Fuller SJ; Mather PB; Wilson JC Heredity (Edinb); 1996 Aug; 77 ( Pt 2)():138-45. PubMed ID: 8760397 [TBL] [Abstract][Full Text] [Related]
35. Mitochondrial DNA evidence indicates the local origin of domestic pigs in the upstream region of the Yangtze River. Jin L; Zhang M; Ma J; Zhang J; Zhou C; Liu Y; Wang T; Jiang AA; Chen L; Wang J; Jiang Z; Zhu L; Shuai S; Li R; Li M; Li X PLoS One; 2012; 7(12):e51649. PubMed ID: 23272130 [TBL] [Abstract][Full Text] [Related]
36. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Scandura M; Iacolina L; Crestanello B; Pecchioli E; Di Benedetto MF; Russo V; Davoli R; Apollonio M; Bertorelle G Mol Ecol; 2008 Apr; 17(7):1745-62. PubMed ID: 18371016 [TBL] [Abstract][Full Text] [Related]
37. Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38. Fang M; Berg F; Ducos A; Andersson L Anim Genet; 2006 Oct; 37(5):459-64. PubMed ID: 16978174 [TBL] [Abstract][Full Text] [Related]
38. Population phylogenomic analysis and origin of mitochondrial DNA in Chinese domestic pig. Huo JH; Wei QP; Wan MC; Liu LX; Hu LF; Zhou QY; Xiong LG; Yang Q; Wu YP Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(2):892-5. PubMed ID: 24865908 [TBL] [Abstract][Full Text] [Related]
39. Natural selection on feralization genes contributed to the invasive spread of wild pigs throughout the United States. Barmentlo NWG; Meirmans PG; Stiver WH; Yarkovich JG; McCann BE; Piaggio AJ; Wright D; Smyser TJ; Bosse M Mol Ecol; 2024 Jun; 33(12):e17383. PubMed ID: 38747342 [TBL] [Abstract][Full Text] [Related]
40. The evolution of Queensland spiny mountain crayfish of the genus Euastacus. I. Testing vicariance and dispersal with interspecific mitochondrial DNA. Ponniah M; Hughes JM Evolution; 2004 May; 58(5):1073-85. PubMed ID: 15212388 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]