These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 24614328)

  • 21. Genetic engineering of Bacillus sp. and fermentation process optimizing for diacetyl production.
    Wang Y; Sun W; Zheng S; Zhang Y; Bao Y
    J Biotechnol; 2019 Aug; 301():2-10. PubMed ID: 31158408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of carboligase activity reaction in Candida glabrata for acetoin production.
    Li S; Xu N; Liu L; Chen J
    Metab Eng; 2014 Mar; 22():32-9. PubMed ID: 24365210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cofactor engineering for advancing chemical biotechnology.
    Wang Y; San KY; Bennett GN
    Curr Opin Biotechnol; 2013 Dec; 24(6):994-9. PubMed ID: 23611567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens.
    Zhang Y; Li S; Liu L; Wu J
    Bioresour Technol; 2013 Feb; 130():256-60. PubMed ID: 23306133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata.
    Xu N; Liu L; Zou W; Liu J; Hua Q; Chen J
    Mol Biosyst; 2013 Feb; 9(2):205-16. PubMed ID: 23172360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Ng CY; Jung MY; Lee J; Oh MK
    Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.
    Guo T; Kong J; Zhang L; Zhang C; Hu S
    PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol.
    Shin SH; Kim S; Kim JY; Lee S; Um Y; Oh MK; Kim YR; Lee J; Yang KS
    J Bacteriol; 2012 May; 194(9):2371-2. PubMed ID: 22493189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers' yeast.
    Duong CT; Strack L; Futschik M; Katou Y; Nakao Y; Fujimura T; Shirahige K; Kodama Y; Nevoigt E
    Metab Eng; 2011 Nov; 13(6):638-47. PubMed ID: 21824525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytosolic localization of acetohydroxyacid synthase Ilv2 and its impact on diacetyl formation during beer fermentation.
    Dasari S; Kölling R
    Appl Environ Microbiol; 2011 Feb; 77(3):727-31. PubMed ID: 21131528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol.
    González E; Fernández MR; Marco D; Calam E; Sumoy L; Parés X; Dequin S; Biosca JA
    Appl Environ Microbiol; 2010 Feb; 76(3):670-9. PubMed ID: 19966022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli.
    Atsumi S; Li Z; Liao JC
    Appl Environ Microbiol; 2009 Oct; 75(19):6306-11. PubMed ID: 19684168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei.
    Nadal I; Rico J; Pérez-Martínez G; Yebra MJ; Monedero V
    J Ind Microbiol Biotechnol; 2009 Sep; 36(9):1233-7. PubMed ID: 19609583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: A practice in Torulopsis glabrata.
    Zhou J; Dong Z; Liu L; Du G; Chen J
    J Microbiol Methods; 2009 Jan; 76(1):70-4. PubMed ID: 18840479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing.
    Omura F
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):503-13. PubMed ID: 18193418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maintenance and stabilization of mtDNA can be facilitated by the DNA-binding activity of Ilv5p.
    Macierzanka M; Plotka M; Pryputniewicz-Drobinska D; Lewandowska A; Lightowlers R; Marszalek J
    Biochim Biophys Acta; 2008 Jan; 1783(1):107-17. PubMed ID: 18023287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation.
    Park JH; Lee KH; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7797-802. PubMed ID: 17463081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selection and properties of alpha-acetolactate decarboxylase-deficient spontaneous mutants of Streptococcus thermophilus.
    Monnet C; Corrieu G
    Food Microbiol; 2007 Sep; 24(6):601-6. PubMed ID: 17418311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata.
    Liu L; Xu Q; Li Y; Shi Z; Zhu Y; Du G; Chen J
    Biotechnol Bioeng; 2007 Jul; 97(4):825-32. PubMed ID: 17154310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.