These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24614328)

  • 41. Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production.
    Liu L; Li Y; Du G; Chen J
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):377-85. PubMed ID: 16404561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pyruvate production in Candida glabrata: manipulation and optimization of physiological function.
    Li S; Chen X; Liu L; Chen J
    Crit Rev Biotechnol; 2016; 36(1):1-10. PubMed ID: 23883073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of alpha-acetolactate decarboxylase inactivation on alpha-acetolactate and diacetyl production by Lactococcus lactis subsp. lactis biovar diacetylactis.
    Aymes F; Monnet C; Corrieu G
    J Biosci Bioeng; 1999; 87(1):87-92. PubMed ID: 16232430
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Redirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae.
    Kim S; Bae SJ; Hahn JS
    Sci Rep; 2016 Apr; 6():24145. PubMed ID: 27052099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and characterization of diacetyl-reducing enzymes from Staphylococcus aureus.
    Vidal I; González J; Bernardo A; Martín R
    Biochem J; 1988 Apr; 251(2):461-6. PubMed ID: 3041963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl-overproducing strains.
    Goupil N; Corthier G; Ehrlich SD; Renault P
    Appl Environ Microbiol; 1996 Jul; 62(7):2636-40. PubMed ID: 8779600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduced production of diacetyl by overexpressing BDH2 gene and ILV5 gene in yeast of the lager brewers with one ILV2 allelic gene deleted.
    Shi TT; Li P; Chen SJ; Chen YF; Guo XW; Xiao DG
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):397-405. PubMed ID: 28154948
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli.
    Ui S; Takusagawa Y; Sato T; Ohtsuki T; Mimura A; Ohkuma M; Kudo T
    Lett Appl Microbiol; 2004; 39(6):533-7. PubMed ID: 15548307
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels.
    Li Y; Chen J; Lun SY; Rui XS
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):680-5. PubMed ID: 11525614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Significantly increase of glycolytic flux and pyruvate productivity in Torulopsis glabrata by heterologous expression of NADH alternative oxidase].
    Qin Y; Dong Z; Zhou J; Liu L; Chen J
    Wei Sheng Wu Xue Bao; 2009 Nov; 49(11):1483-8. PubMed ID: 20112677
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase.
    Bae SJ; Kim S; Hahn JS
    Sci Rep; 2016 Jun; 6():27667. PubMed ID: 27279026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019.
    Luo Z; Liu S; Du G; Zhou J; Chen J
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4447-4458. PubMed ID: 28343242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced pyruvate production in Candida glabrata by carrier engineering.
    Luo Z; Liu S; Du G; Xu S; Zhou J; Chen J
    Biotechnol Bioeng; 2018 Feb; 115(2):473-482. PubMed ID: 29044478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diacetyl biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum.
    Speckman RA; Collins EB
    J Bacteriol; 1968 Jan; 95(1):174-80. PubMed ID: 5636815
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variation in α-acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene.
    Gibson B; Krogerus K; Ekberg J; Monroux A; Mattinen L; Rautio J; Vidgren V
    Yeast; 2015 Jan; 32(1):301-16. PubMed ID: 24965182
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Urea enhances cell growth and pyruvate production in Torulopsis glabrata.
    Yang S; Chen X; Xu N; Liu L; Chen J
    Biotechnol Prog; 2014; 30(1):19-27. PubMed ID: 24124177
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construction of self-cloning bottom-fermenting yeast with low vicinal diketone production by the homo-integration of ILV5.
    Kusunoki K; Ogata T
    Yeast; 2012 Oct; 29(10):435-42. PubMed ID: 23038161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disruption of the alsSD operon of Enterococcus faecalis impairs growth on pyruvate at low pH.
    Repizo GD; Mortera P; Magni C
    Microbiology (Reading); 2011 Sep; 157(Pt 9):2708-2719. PubMed ID: 21719538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.