These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24614501)

  • 1. Involvement of elevated proline accumulation in enhanced osmotic stress tolerance in Arabidopsis conferred by chimeric repressor gene silencing technology.
    Kazama D; Kurusu T; Mitsuda N; Ohme-Takagi M; Tada Y
    Plant Signal Behav; 2014; 9(3):e28211. PubMed ID: 24614501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis.
    Kazama D; Itakura M; Kurusu T; Mitsuda N; Ohme-Takagi M; Tada Y
    Plants (Basel); 2013 Dec; 2(4):769-85. PubMed ID: 27137403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants.
    Tiwari LD; Mittal D; Chandra Mishra R; Grover A
    Plant Physiol Biochem; 2015 Jul; 92():48-55. PubMed ID: 25910649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress.
    Verdoy D; Coba De La Peña T; Redondo FJ; Lucas MM; Pueyo JJ
    Plant Cell Environ; 2006 Oct; 29(10):1913-23. PubMed ID: 16930317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.
    Zang D; Wang C; Ji X; Wang Y
    Plant Sci; 2015 Jun; 235():111-21. PubMed ID: 25900571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants.
    Peng Z; Lu Q; Verma DP
    Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of a Barley Aquaporin Gene,
    Alavilli H; Awasthi JP; Rout GR; Sahoo L; Lee BH; Panda SK
    Front Plant Sci; 2016; 7():1566. PubMed ID: 27818670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species.
    Ullah A; Sun H; Hakim ; Yang X; Zhang X
    Physiol Plant; 2018 Apr; 162(4):439-454. PubMed ID: 29027659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DnaJ-like Zinc Finger Protein ORANGE Promotes Proline Biosynthesis in Drought-Stressed
    Ali F; Wang Q; Fazal A; Wang LJ; Song S; Kong MJ; Mahmood T; Lu S
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors.
    Kumar MN; Verslues PE
    Physiol Plant; 2015 Jul; 154(3):369-80. PubMed ID: 25263537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice.
    Mito T; Seki M; Shinozaki K; Ohme-Takagi M; Matsui K
    Plant Biotechnol J; 2011 Sep; 9(7):736-46. PubMed ID: 21114612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis.
    Chen JB; Yang JW; Zhang ZY; Feng XF; Wang SM
    J Genet; 2013 Dec; 92(3):461-9. PubMed ID: 24371167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress.
    Yoshiba Y; Kiyosue T; Katagiri T; Ueda H; Mizoguchi T; Yamaguchi-Shinozaki K; Wada K; Harada Y; Shinozaki K
    Plant J; 1995 May; 7(5):751-60. PubMed ID: 7773306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Δ
    Signorelli S; Monza J
    Plant Signal Behav; 2017 Nov; 12(11):e1367464. PubMed ID: 28985146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis.
    Székely G; Abrahám E; Cséplo A; Rigó G; Zsigmond L; Csiszár J; Ayaydin F; Strizhov N; Jásik J; Schmelzer E; Koncz C; Szabados L
    Plant J; 2008 Jan; 53(1):11-28. PubMed ID: 17971042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress.
    Song SY; Chen Y; Chen J; Dai XY; Zhang WH
    Planta; 2011 Aug; 234(2):331-45. PubMed ID: 21448719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass.
    Cen H; Ye W; Liu Y; Li D; Wang K; Zhang W
    Sci Rep; 2016 Jun; 6():27320. PubMed ID: 27251327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression analysis of proline metabolism-related genes from halophyte Arabis stelleri under osmotic stress conditions.
    Jung Y; Park J; Choi Y; Yang JG; Kim D; Kim BG; Roh K; Lee DH; Auh CK; Lee S
    J Integr Plant Biol; 2010 Oct; 52(10):891-903. PubMed ID: 20883441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis.
    Shi XP; Ren JJ; Yu Q; Zhou SM; Ren QP; Kong LJ; Wang XL
    Plant Biol (Stuttg); 2018 Mar; 20(2):327-337. PubMed ID: 29125673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis.
    Liu J; Zhu JK
    Plant Physiol; 1997 Jun; 114(2):591-6. PubMed ID: 9193091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.