These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24614603)

  • 1. Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves.
    Qadis AQ; Goya S; Ikuta K; Yatsu M; Kimura A; Nakanishi S; Sato S
    J Vet Med Sci; 2014 Jun; 76(6):877-85. PubMed ID: 24614603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle.
    Goto H; Qadis AQ; Kim YH; Ikuta K; Ichijo T; Sato S
    J Vet Med Sci; 2016 Nov; 78(10):1595-1600. PubMed ID: 27430197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term high-grain diet altered the ruminal pH, fermentation, and composition and functions of the rumen bacterial community, leading to enhanced lactic acid production in Japanese Black beef cattle during fattening.
    Ogata T; Makino H; Ishizuka N; Iwamoto E; Masaki T; Ikuta K; Kim YH; Sato S
    PLoS One; 2019; 14(11):e0225448. PubMed ID: 31770419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a bacteria-based probiotic on subpopulations of peripheral leukocytes and their cytokine mRNA expression in calves.
    Qadis AQ; Goya S; Yatsu M; Yoshida YU; Ichijo T; Sato S
    J Vet Med Sci; 2014 Mar; 76(2):189-95. PubMed ID: 24131856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of milk allowance on concentrate intake, ruminal environment, and ruminal development in milk-fed Holstein calves.
    Kristensen NB; Sehested J; Jensen SK; Vestergaard M
    J Dairy Sci; 2007 Sep; 90(9):4346-55. PubMed ID: 17699055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition.
    Chiquette J; Allison MJ; Rasmussen MA
    J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves.
    Khan MA; Lee HJ; Lee WS; Kim HS; Kim SB; Park SB; Baek KS; Ha JK; Choi YJ
    J Dairy Sci; 2008 Mar; 91(3):1140-9. PubMed ID: 18292270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet.
    Kenney NM; Vanzant ES; Harmon DL; McLeod KR
    J Anim Sci; 2015 May; 93(5):2336-48. PubMed ID: 26020329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls.
    Nagata R; Kim YH; Ohkubo A; Kushibiki S; Ichijo T; Sato S
    J Dairy Sci; 2018 May; 101(5):4424-4436. PubMed ID: 29477528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched-chain volatile fatty acids and folic acid accelerated the growth of Holstein dairy calves by stimulating nutrient digestion and rumen metabolism.
    Liu YR; Du HS; Wu ZZ; Wang C; Liu Q; Guo G; Huo WJ; Zhang YL; Pei CX; Zhang SL
    Animal; 2020 Jun; 14(6):1176-1183. PubMed ID: 31840620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short communication: Does early-life administration of a Megasphaera elsdenii probiotic affect long-term establishment of the organism in the rumen and alter rumen metabolism in the dairy calf?
    Yohe TT; Enger BD; Wang L; Tucker HLM; Ceh CA; Parsons CLM; Yu Z; Daniels KM
    J Dairy Sci; 2018 Feb; 101(2):1747-1751. PubMed ID: 29174148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of supplemental butyrate and weaning on rumen fermentation in Holstein calves.
    McCurdy DE; Wilkins KR; Hiltz RL; Moreland S; Klanderman K; Laarman AH
    J Dairy Sci; 2019 Oct; 102(10):8874-8882. PubMed ID: 31351719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short communication: Comparison of pH, volatile fatty acids, and microbiome of rumen samples from preweaned calves obtained via cannula or stomach tube.
    Terré M; Castells L; Fàbregas F; Bach A
    J Dairy Sci; 2013 Aug; 96(8):5290-4. PubMed ID: 23706486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of an increased concentrate diet on rumen pH and the bacterial community in Japanese Black beef cattle at different fattening stages.
    Ogata T; Kim YH; Masaki T; Iwamoto E; Ohtani Y; Orihashi T; Ichijo T; Sato S
    J Vet Med Sci; 2019 Jul; 81(7):968-974. PubMed ID: 31118356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral administration of Lactobacillus plantarum and Bacillus subtilis on rumen fermentation and the bacterial community in calves.
    Zhang R; Dong X; Zhou M; Tu Y; Zhang N; Deng K; Diao Q
    Anim Sci J; 2017 May; 88(5):755-762. PubMed ID: 27628956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of active dried Saccharomyces cerevisiae on ruminal fermentation and bacterial community during the short-term ruminal acidosis challenge model in Holstein calves.
    Watanabe Y; Kim YH; Kushibiki S; Ikuta K; Ichijo T; Sato S
    J Dairy Sci; 2019 Jul; 102(7):6518-6531. PubMed ID: 31030914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows.
    AlZahal O; Dionissopoulos L; Laarman AH; Walker N; McBride BW
    J Dairy Sci; 2014 Dec; 97(12):7751-63. PubMed ID: 25282426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue.
    Penner GB; Taniguchi M; Guan LL; Beauchemin KA; Oba M
    J Dairy Sci; 2009 Jun; 92(6):2767-81. PubMed ID: 19448011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological effects of starter-induced ruminal acidosis in calves before, during, and after weaning.
    Gelsinger SL; Coblentz WK; Zanton GI; Ogden RK; Akins MS
    J Dairy Sci; 2020 Mar; 103(3):2762-2772. PubMed ID: 31882217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium bicarbonate and yeast culture effects on ruminal fermentation, growth, and intake in dairy calves.
    Quigley JD; Wallis LB; Dowlen HH; Heitmann RN
    J Dairy Sci; 1992 Dec; 75(12):3531-8. PubMed ID: 1335462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.