BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 24614975)

  • 1. Detection of single methylated cytosine using junction-forming DNA probes.
    Takanashi K; Kato T
    Analyst; 2014 May; 139(9):2122-6. PubMed ID: 24614975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-selective modification of DNA cytosine by using junction-forming DNA probes and its application to the detection of single cytosine methylation.
    Takanashi K; Kato T
    Anal Sci; 2014; 30(3):371-6. PubMed ID: 24614732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Chip Sequence-Specific Immunochemical Epigenomic Analysis Utilizing Outward-Turned Cytosine in a DNA Bulge with Handheld Surface Plasmon Resonance Equipment.
    Kurita R; Yanagisawa H; Yoshioka K; Niwa O
    Anal Chem; 2015 Nov; 87(22):11581-6. PubMed ID: 26482842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosine methylated DNA synthesized by Taq polymerase used to assay methylation sensitivity of restriction endonuclease HinfI.
    Colasanti J; Sundaresan V
    Nucleic Acids Res; 1991 Jan; 19(2):391-4. PubMed ID: 2014176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-CpG cytosine methylation of p53 exon 5 in non-small cell lung carcinoma.
    Kouidou S; Agidou T; Kyrkou A; Andreou A; Katopodi T; Georgiou E; Krikelis D; Dimitriadou A; Spanos P; Tsilikas C; Destouni H; Tzimagiorgis G
    Lung Cancer; 2005 Dec; 50(3):299-307. PubMed ID: 16125822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate detection of methylated cytosine in complex methylation landscapes.
    Palanisamy R; Connolly AR; Trau M
    Anal Chem; 2013 Jul; 85(14):6575-9. PubMed ID: 23768008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel photodynamic effect of a psoralen-conjugated oligonucleotide for the discrimination of the methylation of cytosine in DNA.
    Yamayoshi A; Matsuyama Y; Kushida M; Kobori A; Murakami A
    Photochem Photobiol; 2014; 90(3):716-22. PubMed ID: 24372306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of DNA methylation using electrochemiluminescence with surface accumulable coreactant.
    Kurita R; Arai K; Nakamoto K; Kato D; Niwa O
    Anal Chem; 2012 Feb; 84(4):1799-803. PubMed ID: 22263690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential carcinogen-DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms.
    Hu W; Feng Z; Tang MS
    Biochemistry; 2003 Aug; 42(33):10012-23. PubMed ID: 12924950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific immunochemical methylation assessment from genome DNA utilizing a conformational difference between looped-out target and stacked-in nontarget methylcytosines.
    Kurita R; Yanagisawa H; Yoshioka K; Niwa O
    Biosens Bioelectron; 2015 Aug; 70():366-71. PubMed ID: 25845328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qualitative and quantitative polymerase chain reaction-based methods for DNA methylation analyses.
    Wong IH
    Methods Mol Biol; 2006; 336():33-43. PubMed ID: 16916251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of DNA base variation and cytosine methylation at a single nucleotide site using a highly sensitive fluorescent probe.
    Duprey JL; Zhao ZY; Bassani DM; Manchester J; Vyle JS; Tucker JH
    Chem Commun (Camb); 2011 Jun; 47(23):6629-31. PubMed ID: 21562680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-selective 5-methylcytosine oxidation for epigenotyping.
    Okamoto A; Tainaka K
    Nucleic Acids Symp Ser (Oxf); 2005; (49):45-6. PubMed ID: 17150625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MethylQuant: a real-time PCR-based method to quantify DNA methylation at single specific cytosines.
    Dugast-Darzacq C; Grange T
    Methods Mol Biol; 2009; 507():281-303. PubMed ID: 18987822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time PCR-based assay for quantitative determination of methylation status.
    Lehmann U; Kreipe H
    Methods Mol Biol; 2004; 287():207-18. PubMed ID: 15273414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single nucleotide extension technology for quantitative site-specific evaluation of metC/C in GC-rich regions.
    Kaminsky ZA; Assadzadeh A; Flanagan J; Petronis A
    Nucleic Acids Res; 2005 Jun; 33(10):e95. PubMed ID: 15958788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for accurate assessment of DNA quality after bisulfite treatment.
    Ehrich M; Zoll S; Sur S; van den Boom D
    Nucleic Acids Res; 2007; 35(5):e29. PubMed ID: 17259213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays.
    Nouzova M; Holtan N; Oshiro MM; Isett RB; Munoz-Rodriguez JL; List AF; Narro ML; Miller SJ; Merchant NC; Futscher BW
    J Pharmacol Exp Ther; 2004 Dec; 311(3):968-81. PubMed ID: 15302897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bisulphite sequencing of plant genomic DNA.
    Aichinger E; Köhler C
    Methods Mol Biol; 2010; 655():433-43. PubMed ID: 20734278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bisulfite genomic sequencing used in the analysis of epigenetic states, a technique in the emerging environmental genotoxicology research.
    Hayatsu H
    Mutat Res; 2008; 659(1-2):77-82. PubMed ID: 18485805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.