BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24615169)

  • 21. Molecular defect in the membrane skeleton of blood bank-stored red cells. Abnormal spectrin-protein 4.1-actin complex formation.
    Wolfe LC; Byrne AM; Lux SE
    J Clin Invest; 1986 Dec; 78(6):1681-6. PubMed ID: 3782475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1.
    Ohanian V; Wolfe LC; John KM; Pinder JC; Lux SE; Gratzer WB
    Biochemistry; 1984 Sep; 23(19):4416-20. PubMed ID: 6487610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Erythrocyte membrane fractions contain free barbed filament ends despite sufficient concentrations of retained capper(s) to prevent barbed end growth.
    DiNubile MJ
    Cell Motil Cytoskeleton; 1999; 43(1):10-22. PubMed ID: 10340699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca2(+)-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1.
    Tanaka T; Kadowaki K; Lazarides E; Sobue K
    J Biol Chem; 1991 Jan; 266(2):1134-40. PubMed ID: 1985939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of cross-linking spectrin-actin complexes with band 4.1 on the state of polymerization of the actin.
    Husain A; Sawyer WH; Howlett GJ
    Biochem Biophys Res Commun; 1983 Mar; 111(2):360-5. PubMed ID: 6838565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Junctional sites of erythrocyte skeletal proteins are specific targets of tert-butylhydroperoxide oxidative damage.
    Caprari P; Bozzi A; Malorni W; Bottini A; Iosi F; Santini MT; Salvati AM
    Chem Biol Interact; 1995 Mar; 94(3):243-58. PubMed ID: 7820887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectrin oxidation correlates with membrane vesiculation in stored RBCs.
    Wagner GM; Chiu DT; Qju JH; Heath RH; Lubin BH
    Blood; 1987 Jun; 69(6):1777-81. PubMed ID: 3580578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape and volume changes in erythrocyte ghosts and spectrin-actin networks.
    Johnson RM; Taylor G; Meyer DB
    J Cell Biol; 1980 Aug; 86(2):371-6. PubMed ID: 6893198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An actomyosin contractile mechanism for erythrocyte shape transformations.
    Fowler VM
    J Cell Biochem; 1986; 31(1):1-9. PubMed ID: 3722275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disintegration of red cell membrane cytoskeleton by hemin.
    Shaklai N; Avissar N; Rabizadeh E; Shaklai M
    Biochem Int; 1986 Sep; 13(3):467-77. PubMed ID: 3790141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane Remodelling and Vesicle Formation During Ageing of Human Red Blood Cells.
    Ciana A; Achilli C; Gaur A; Minetti G
    Cell Physiol Biochem; 2017; 42(3):1127-1138. PubMed ID: 28668965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane-cytoskeleton dynamics in rat parietal cells: mobilization of actin and spectrin upon stimulation of gastric acid secretion.
    Mercier F; Reggio H; Devilliers G; Bataille D; Mangeat P
    J Cell Biol; 1989 Feb; 108(2):441-53. PubMed ID: 2645299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro phosphorylation of the red blood cell cytoskeleton complex by cyclic AMP-dependent protein kinase from erythrocyte membrane.
    Boivin P; Garbarz M; Dhermy D; Galand C
    Biochim Biophys Acta; 1981 Sep; 647(1):1-6. PubMed ID: 6271204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton.
    Kalfa TA; Pushkaran S; Mohandas N; Hartwig JH; Fowler VM; Johnson JF; Joiner CH; Williams DA; Zheng Y
    Blood; 2006 Dec; 108(12):3637-45. PubMed ID: 16882712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectrin/actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation. Evidence for oligomeric actin in the erythrocyte cytoskeleton.
    Brenner SL; Korn ED
    J Biol Chem; 1980 Feb; 255(4):1670-6. PubMed ID: 6892570
    [No Abstract]   [Full Text] [Related]  

  • 36. Biochemical analysis of potential sites for protein 4.1-mediated anchoring of the spectrin-actin skeleton to the erythrocyte membrane.
    Workman RF; Low PS
    J Biol Chem; 1998 Mar; 273(11):6171-6. PubMed ID: 9497338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Erythrocyte actin and spectrin. Interactions with muscle contractile and regulatory proteins.
    Puszkin S; Maimon J; Puszkin E
    Biochim Biophys Acta; 1978 Nov; 513(2):205-20. PubMed ID: 152647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An examination of the soluble oligomeric complexes extracted from the red cell membrane and their relation to the membrane cytoskeleton.
    Beaven GH; Jean-Baptiste L; Ungewickell E; Baines AJ; Shahbakhti F; Pinder JC; Lux SE; Gratzer WB
    Eur J Cell Biol; 1985 Mar; 36(2):299-306. PubMed ID: 4039666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Malaria: surprising mechanism of merozoite egress revealed.
    Lew VL
    Curr Biol; 2011 May; 21(9):R314-6. PubMed ID: 21549952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of the lipid-binding site of the ankyrin-binding domain of erythroid beta-spectrin on the properties of natural membranes and skeletal structures.
    Chorzalska A; Lach A; Borowik T; Wolny M; Hryniewicz-Jankowska A; Kolondra A; Langner M; Sikorski AF
    Cell Mol Biol Lett; 2010 Sep; 15(3):406-23. PubMed ID: 20352359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.