These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24615248)

  • 21. Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels.
    Paiè P; Bragheri F; Vazquez RM; Osellame R
    Lab Chip; 2014 Jun; 14(11):1826-33. PubMed ID: 24740611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate.
    Wu D; Niu LG; Wu SZ; Xu J; Midorikawa K; Sugioka K
    Lab Chip; 2015 Mar; 15(6):1515-23. PubMed ID: 25622687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic cytometer for the characterization of cell lysis.
    SooHoo JR; Herr JK; Ramsey JM; Walker GM
    Anal Chem; 2012 Mar; 84(5):2195-201. PubMed ID: 22242682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical fingerprinting, 3D profiling and detection of tumor cells with solid-state micropores.
    Asghar W; Wan Y; Ilyas A; Bachoo R; Kim YT; Iqbal SM
    Lab Chip; 2012 Jul; 12(13):2345-52. PubMed ID: 22549275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A method for dynamic system characterization using hydraulic series resistance.
    Kim D; Chesler NC; Beebe DJ
    Lab Chip; 2006 May; 6(5):639-44. PubMed ID: 16652179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell density detection based on a microfluidic chip with two electrode pairs.
    Wang Y; Chen D; Guo X
    Biotechnol Lett; 2022 Nov; 44(11):1301-1311. PubMed ID: 36088497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in microfluidic techniques for single-cell biophysical characterization.
    Zheng Y; Nguyen J; Wei Y; Sun Y
    Lab Chip; 2013 Jul; 13(13):2464-83. PubMed ID: 23681312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An impedance-based flow microcytometer for single cell morphology discrimination.
    Shaker M; Colella L; Caselli F; Bisegna P; Renaud P
    Lab Chip; 2014 Jul; 14(14):2548-55. PubMed ID: 24874178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter.
    Scott R; Sethu P; Harnett CK
    Rev Sci Instrum; 2008 Apr; 79(4):046104. PubMed ID: 18447562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrated optics microfluidic device for detecting single DNA molecules.
    Krogmeier JR; Schaefer I; Seward G; Yantz GR; Larson JW
    Lab Chip; 2007 Dec; 7(12):1767-74. PubMed ID: 18030399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical flow metering of blood for point-of-care diagnostics.
    Watkins N; Hassan U; Rodriguez W; Bashir R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3255-7. PubMed ID: 23366620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical velocimetry on centrifugal microfluidic platforms.
    Abi-Samra K; Kim TH; Park DK; Kim N; Kim J; Kim H; Cho YK; Madou M
    Lab Chip; 2013 Aug; 13(16):3253-60. PubMed ID: 23787459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical evaluation and experimental validation of cross-flow microfiltration device design.
    De Jesús Vega M; Wakim J; Orbey N; Barry C
    Biomed Microdevices; 2019 Feb; 21(1):21. PubMed ID: 30790088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.