BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24615252)

  • 1. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running.
    Otsuka M; Shim JK; Kurihara T; Yoshioka S; Nokata M; Isaka T
    J Appl Biomech; 2014 Jun; 30(3):390-400. PubMed ID: 24615252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthropometry-driven block setting improves starting block performance in sprinters.
    Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C
    PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance.
    Bezodis NE; Walton SP; Nagahara R
    J Sports Sci; 2019 Mar; 37(5):560-567. PubMed ID: 30306822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of a reduced first step width on starting block and first stance power and impulses during an athletic sprint start.
    Sandamas P; Gutierrez-Farewik EM; Arndt A
    J Sports Sci; 2019 May; 37(9):1046-1054. PubMed ID: 30460879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in sprint start performance by modulating an initial loading location on the starting blocks.
    Nagahara R; Gleadhill S; Ohshima Y
    J Sports Sci; 2020 Nov; 38(21):2437-2445. PubMed ID: 32608346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration capability in elite sprinters and ground impulse: Push more, brake less?
    Morin JB; Slawinski J; Dorel S; de Villareal ES; Couturier A; Samozino P; Brughelli M; Rabita G
    J Biomech; 2015 Sep; 48(12):3149-54. PubMed ID: 26209876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and kinematic synchronization between blind and guide sprinters.
    Nagahara R
    J Sports Sci; 2021 Jul; 39(14):1661-1668. PubMed ID: 33622181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normative spatiotemporal and ground reaction force data for female and male sprinting.
    Nagahara R
    J Sports Sci; 2023 Jun; 41(12):1240-1249. PubMed ID: 37805986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal starting block configuration in sprint running; a comparison of biological and prosthetic legs.
    Taboga P; Grabowski AM; di Prampero PE; Kram R
    J Appl Biomech; 2014 Jun; 30(3):381-9. PubMed ID: 24345741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 12. Sprint Acceleration Mechanics in Masters Athletes.
    Pantoja PD; Saez DE Villarreal E; Brisswalter J; Peyré-Tartaruga LA; Morin JB
    Med Sci Sports Exerc; 2016 Dec; 48(12):2469-2476. PubMed ID: 27414690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and kinematic determinants of female sprint performance.
    Gleadhill S; Nagahara R
    J Sports Sci; 2021 Mar; 39(6):609-617. PubMed ID: 33143572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion.
    Rabita G; Dorel S; Slawinski J; Sàez-de-Villarreal E; Couturier A; Samozino P; Morin JB
    Scand J Med Sci Sports; 2015 Oct; 25(5):583-94. PubMed ID: 25640466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design.
    Morin JB; Samozino P; Murata M; Cross MR; Nagahara R
    J Biomech; 2019 Sep; 94():82-87. PubMed ID: 31376978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sprint start kinematics during competition in elite and world-class male and female sprinters.
    Ciacci S; Merni F; Bartolomei S; Di Michele R
    J Sports Sci; 2017 Jul; 35(13):1270-1278. PubMed ID: 27540875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sprint Start Kinetics of Amputee and Non-Amputee Sprinters.
    Willwacher S; Herrmann V; Heinrich K; Funken J; Strutzenberger G; Goldmann JP; Braunstein B; Brazil A; Irwin G; Potthast W; Brüggemann GP
    PLoS One; 2016; 11(11):e0166219. PubMed ID: 27846241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground reaction force across the transition during sprint acceleration.
    Nagahara R; Kanehisa H; Fukunaga T
    Scand J Med Sci Sports; 2020 Mar; 30(3):450-461. PubMed ID: 31705835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.