These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24615558)

  • 21. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.
    Portelli G; Ruffier F; Roubieu FL; Franceschini N
    PLoS One; 2011 May; 6(5):e19486. PubMed ID: 21589861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.
    Bahlman JW; Swartz SM; Breuer KS
    Bioinspir Biomim; 2014 Jun; 9(2):025008. PubMed ID: 24851830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy.
    de Croon GC
    Bioinspir Biomim; 2016 Jan; 11(1):016004. PubMed ID: 26740501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance analysis of jump-gliding locomotion for miniature robotics.
    Vidyasagar A; Zufferey JC; Floreano D; Kovač M
    Bioinspir Biomim; 2015 Mar; 10(2):025006. PubMed ID: 25811417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.
    Colorado J; Barrientos A; Rossi C; Bahlman JW; Breuer KS
    Bioinspir Biomim; 2012 Sep; 7(3):036006. PubMed ID: 22535882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion.
    Yan JH; Zhang XB; Zhao J; Liu GF; Cai HG; Pan QM
    Bioinspir Biomim; 2015 Aug; 10(4):046016. PubMed ID: 26241519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
    Werner A; Stürzl W; Zanker J
    PLoS One; 2016; 11(2):e0147106. PubMed ID: 26886006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions.
    Ravi S; Garcia JE; Wang C; Dyer AG
    J Exp Biol; 2016 Nov; 219(Pt 21):3465-3472. PubMed ID: 27591315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Honeybees change their height to restore their optic flow.
    Portelli G; Ruffier F; Franceschini N
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Apr; 196(4):307-13. PubMed ID: 20217419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a bio-inspired controller for dynamic soaring in a simulated unmanned aerial vehicle.
    Barate R; Doncieux S; Meyer JA
    Bioinspir Biomim; 2006 Sep; 1(3):76-88. PubMed ID: 17671309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial endocrine controller for power management in robotic systems.
    Sauzé C; Neal M
    IEEE Trans Neural Netw Learn Syst; 2013 Dec; 24(12):1973-85. PubMed ID: 24805216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual gaze control during peering flight manoeuvres in honeybees.
    Boeddeker N; Hemmi JM
    Proc Biol Sci; 2010 Apr; 277(1685):1209-17. PubMed ID: 20007175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bio-inspired step-climbing in a hexapod robot.
    Chou YC; Yu WS; Huang KJ; Lin PC
    Bioinspir Biomim; 2012 Sep; 7(3):036008. PubMed ID: 22549014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual control of flight speed in honeybees.
    Baird E; Srinivasan MV; Zhang S; Cowling A
    J Exp Biol; 2005 Oct; 208(Pt 20):3895-905. PubMed ID: 16215217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.
    Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ
    Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimum viewing angle for visually guided ground speed control in bumblebees.
    Baird E; Kornfeldt T; Dacke M
    J Exp Biol; 2010 May; 213(Pt 10):1625-32. PubMed ID: 20435812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emulating avian orographic soaring with a small autonomous glider.
    Fisher A; Marino M; Clothier R; Watkins S; Peters L; Palmer JL
    Bioinspir Biomim; 2015 Dec; 11(1):016002. PubMed ID: 26674126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and characterization of a multi-articulated robotic bat wing.
    Bahlman JW; Swartz SM; Breuer KS
    Bioinspir Biomim; 2013 Mar; 8(1):016009. PubMed ID: 23385471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.