These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24615558)

  • 41. Control for small-speed lateral flight in a model insect.
    Zhang YL; Sun M
    Bioinspir Biomim; 2011 Sep; 6(3):036003. PubMed ID: 21775781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inertial attitude control of a bat-like morphing-wing air vehicle.
    Colorado J; Barrientos A; Rossi C; Parra C
    Bioinspir Biomim; 2013 Mar; 8(1):016001. PubMed ID: 23211685
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A locust-inspired miniature jumping robot.
    Zaitsev V; Gvirsman O; Ben Hanan U; Weiss A; Ayali A; Kosa G
    Bioinspir Biomim; 2015 Nov; 10(6):066012. PubMed ID: 26602094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of optic flow pooling in insect flight control in cluttered environments.
    Lecoeur J; Dacke M; Floreano D; Baird E
    Sci Rep; 2019 May; 9(1):7707. PubMed ID: 31118454
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using sensor habituation in mobile robots to reduce oscillatory movements in narrow corridors.
    Chang C
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1582-9. PubMed ID: 16342498
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Goal seeking in honeybees: matching of optic flow snapshots?
    Dittmar L; Stürzl W; Baird E; Boeddeker N; Egelhaaf M
    J Exp Biol; 2010 Sep; 213(Pt 17):2913-23. PubMed ID: 20709919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insect navigation: measuring travel distance across ground and through air.
    Collett M; Collett TS; Srinivasan MV
    Curr Biol; 2006 Oct; 16(20):R887-90. PubMed ID: 17055973
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A test bed for insect-inspired robotic control.
    Reiser MB; Dickinson MH
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2267-85. PubMed ID: 14599319
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Range perception through apparent image speed in freely flying honeybees.
    Srinivasan MV; Lehrer M; Kirchner WH; Zhang SW
    Vis Neurosci; 1991 May; 6(5):519-35. PubMed ID: 2069903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field.
    Linander N; Dacke M; Baird E
    J Exp Biol; 2015 Apr; 218(Pt 7):1051-9. PubMed ID: 25657205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High contrast sensitivity for visually guided flight control in bumblebees.
    Chakravarthi A; Kelber A; Baird E; Dacke M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Dec; 203(12):999-1006. PubMed ID: 28879513
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinematic strategies for mitigating gust perturbations in insects.
    Vance JT; Faruque I; Humbert JS
    Bioinspir Biomim; 2013 Mar; 8(1):016004. PubMed ID: 23302326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neural basis of forward flight control and landing in honeybees.
    Ibbotson MR; Hung YS; Meffin H; Boeddeker N; Srinivasan MV
    Sci Rep; 2017 Nov; 7(1):14591. PubMed ID: 29109404
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.
    Roberts B; Lind R; Chatterjee S
    Bioinspir Biomim; 2011 Jun; 6(2):026010. PubMed ID: 21558603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How bumblebees use lateral and ventral optic flow cues for position control in environments of different proximity.
    Linander N; Baird E; Dacke M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 May; 203(5):343-351. PubMed ID: 28429124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
    Johnston J; Gopalarathnam A
    Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Honeybee flight: a novel 'streamlining' response.
    Luu T; Cheung A; Ball D; Srinivasan MV
    J Exp Biol; 2011 Jul; 214(Pt 13):2215-25. PubMed ID: 21653815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.
    Siddall R; Kovač M
    Bioinspir Biomim; 2014 Sep; 9(3):031001. PubMed ID: 24615533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of lateral optic flow cues in hawkmoth flight control.
    Stöckl A; Grittner R; Pfeiffer K
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31196978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Autonomous Visual Navigation of an Indoor Environment Using a Parsimonious, Insect Inspired Familiarity Algorithm.
    Gaffin DD; Brayfield BP
    PLoS One; 2016; 11(4):e0153706. PubMed ID: 27119720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.