BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 24615990)

  • 1. Synthesis and reactivity comparisons of 1-methyl-3-substituted cyclopropene mini-tags for tetrazine bioorthogonal reactions.
    Yang J; Liang Y; Šečkutė J; Houk KN; Devaraj NK
    Chemistry; 2014 Mar; 20(12):3365-75. PubMed ID: 24615990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles.
    Wu H; Devaraj NK
    Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caged cyclopropenes for controlling bioorthogonal reactivity.
    Kumar P; Jiang T; Li S; Zainul O; Laughlin ST
    Org Biomol Chem; 2018 Jun; 16(22):4081-4085. PubMed ID: 29790564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities.
    Liu F; Liang Y; Houk KN
    Acc Chem Res; 2017 Sep; 50(9):2297-2308. PubMed ID: 28876890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme- or light-triggered cyclopropenes for bioorthogonal ligation.
    Jiang T; Laughlin ST
    Methods Enzymol; 2020; 641():1-34. PubMed ID: 32713519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes.
    Wu H; Yang J; Šečkutė J; Devaraj NK
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5805-9. PubMed ID: 24764312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stable and Selective Tetrazines for the Coordination-Assisted Bioorthogonal Ligation with Vinylboronic Acids.
    Eising S; Engwerda AHJ; Riedijk X; Bickelhaupt FM; Bonger KM
    Bioconjug Chem; 2018 Sep; 29(9):3054-3059. PubMed ID: 30080405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, Characterization, and Cycloaddition Reactivity of a Monocyclic Aromatic 1,2,3,5-Tetrazine.
    Wu ZC; Boger DL
    J Am Chem Soc; 2019 Oct; 141(41):16388-16397. PubMed ID: 31524389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substituent Effects in Bioorthogonal Diels-Alder Reactions of 1,2,4,5-Tetrazines.
    Houszka N; Mikula H; Svatunek D
    Chemistry; 2023 May; 29(29):e202300345. PubMed ID: 36853623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off.
    Svatunek D; Wilkovitsch M; Hartmann L; Houk KN; Mikula H
    J Am Chem Soc; 2022 May; 144(18):8171-8177. PubMed ID: 35500228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomeric cyclopropenes exhibit unique bioorthogonal reactivities.
    Kamber DN; Nazarova LA; Liang Y; Lopez SA; Patterson DM; Shih HW; Houk KN; Prescher JA
    J Am Chem Soc; 2013 Sep; 135(37):13680-3. PubMed ID: 24000889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized cyclopropenes as bioorthogonal chemical reporters.
    Patterson DM; Nazarova LA; Xie B; Kamber DN; Prescher JA
    J Am Chem Soc; 2012 Nov; 134(45):18638-43. PubMed ID: 23072583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live-Cell Imaging of Sterculic Acid-a Naturally Occurring 1,2-Cyclopropene Fatty Acid-by Bioorthogonal Reaction with Turn-On Tetrazine-Fluorophore Conjugates.
    Bertheussen K; van de Plassche M; Bakkum T; Gagestein B; Ttofi I; Sarris AJC; Overkleeft HS; van der Stelt M; van Kasteren SI
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202207640. PubMed ID: 35838324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the scope of cyclopropene reporters for the detection of metabolically engineered glycoproteins by Diels-Alder reactions.
    Späte AK; Schart VF; Häfner J; Niederwieser A; Mayer TU; Wittmann V
    Beilstein J Org Chem; 2014; 10():2235-42. PubMed ID: 25298790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acids with fluorescent tetrazine ethers as bioorthogonal handles for peptide modification.
    Ros E; Bellido M; Matarin JA; Gallen A; Martínez M; Rodríguez L; Verdaguer X; Ribas de Pouplana L; Riera A
    RSC Adv; 2022 May; 12(23):14321-14327. PubMed ID: 35702248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular Enzyme- and Light-Based Activation of Cyclopropene-Tetrazine Ligation.
    Jiang T; Kumar P; Huang W; Kao WS; Thompson AO; Camarda FM; Laughlin ST
    Chembiochem; 2019 Sep; 20(17):2222-2226. PubMed ID: 30990967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry.
    Liu L; Zhang D; Johnson M; Devaraj NK
    Nat Chem; 2022 Sep; 14(9):1078-1085. PubMed ID: 35788560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of heterocyclic rings from cyclopropenes.
    Huo H; Gong Y
    Org Biomol Chem; 2022 May; 20(19):3847-3869. PubMed ID: 35470816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational model to predict the Diels-Alder reactivity of aryl/alkyl-substituted tetrazines.
    Svatunek D; Denk C; Mikula H
    Monatsh Chem; 2018; 149(4):833-837. PubMed ID: 29681659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid oligonucleotide-templated fluorogenic tetrazine ligations.
    Seckute J; Yang J; Devaraj NK
    Nucleic Acids Res; 2013 Aug; 41(15):e148. PubMed ID: 23775794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.