These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24616008)

  • 1. Role of edge geometry and magnetic interaction in opening bandgap of low-dimensional graphene.
    Zhu Y; Lian J; Jiang Q
    Chemphyschem; 2014 Apr; 15(5):958-65. PubMed ID: 24616008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cohesive-energy-resolved bandgap of nanoscale graphene derivatives.
    Wen Z; Luo J; Zhu Y; Jiang Q
    Chemphyschem; 2014 Aug; 15(12):2563-8. PubMed ID: 24863150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride.
    Wang HS; Chen L; Elibol K; He L; Wang H; Chen C; Jiang C; Li C; Wu T; Cong CX; Pennycook TJ; Argentero G; Zhang D; Watanabe K; Taniguchi T; Wei W; Yuan Q; Meyer JC; Xie X
    Nat Mater; 2021 Feb; 20(2):202-207. PubMed ID: 32958881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots.
    Saleem Y; Najera Baldo L; Delgado A; Szulakowska L; Hawrylak P
    J Phys Condens Matter; 2019 Jul; 31(30):305503. PubMed ID: 30812024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical insight into gap openings in graphene.
    Zhu YF; Dai QQ; Zhao M; Jiang Q
    Sci Rep; 2013; 3():1524. PubMed ID: 23524635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap openings in graphene regarding interfacial interaction from substrates.
    Zhu YF; Dai QQ; Zheng WT; Jiang Q
    Phys Chem Chem Phys; 2014 Mar; 16(12):5600-4. PubMed ID: 24514582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-phonon interaction toward engineering carrier mobility of periodic edge structured graphene nanoribbons.
    Hsu TC; Wu BX; Lin RT; Chien CJ; Yeh CY; Chang TH
    Sci Rep; 2023 Apr; 13(1):5781. PubMed ID: 37031224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of graphene's edge energy using hexagonal graphene quantum dots and PM7 method.
    Vorontsov AV; Tretyakov EV
    Phys Chem Chem Phys; 2018 May; 20(21):14740-14752. PubMed ID: 29774909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope.
    Liao Z; Medrano Sandonas L; Zhang T; Gall M; Dianat A; Gutierrez R; Mühle U; Gluch J; Jordan R; Cuniberti G; Zschech E
    Sci Rep; 2017 Mar; 7(1):211. PubMed ID: 28303001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons.
    Magda GZ; Jin X; Hagymási I; Vancsó P; Osváth Z; Nemes-Incze P; Hwang C; Biró LP; Tapasztó L
    Nature; 2014 Oct; 514(7524):608-11. PubMed ID: 25355361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators.
    Lin Z; Qin W; Zeng J; Chen W; Cui P; Cho JH; Qiao Z; Zhang Z
    Nano Lett; 2017 Jul; 17(7):4013-4018. PubMed ID: 28534404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size and edge dependence of two-photon absorption in rectangular graphene quantum dots.
    Feng X; Qin Y; Liu Y
    Opt Express; 2018 Mar; 26(6):7132-7139. PubMed ID: 29609399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.