These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24616008)

  • 21. Edge-decorated graphene nanoribbons by scandium as hydrogen storage media.
    Wu M; Gao Y; Zhang Z; Zeng XC
    Nanoscale; 2012 Feb; 4(3):915-20. PubMed ID: 22218647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bandgap engineering of coal-derived graphene quantum dots.
    Ye R; Peng Z; Metzger A; Lin J; Mann JA; Huang K; Xiang C; Fan X; Samuel EL; Alemany LB; Martí AA; Tour JM
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7041-8. PubMed ID: 25757413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges.
    Borin Barin G; Di Giovannantonio M; Lohr TG; Mishra S; Kinikar A; Perrin ML; Overbeck J; Calame M; Feng X; Fasel R; Ruffieux P
    Nanoscale; 2023 Oct; 15(41):16766-16774. PubMed ID: 37818609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topological and Spectral Properties of Wavy Zigzag Nanoribbons.
    Arockiaraj M; Fiona JC; Kavitha SRJ; Shalini AJ; Balasubramanian K
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene quantum dots embedded in a hexagonal BN sheet: identical influences of zigzag/armchair edges.
    Zhao R; Wang J; Yang M; Liu Z; Liu Z
    Phys Chem Chem Phys; 2013 Jan; 15(3):803-6. PubMed ID: 23203282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum Dots in Graphene Nanoribbons.
    Wang S; Kharche N; Costa Girão E; Feng X; Müllen K; Meunier V; Fasel R; Ruffieux P
    Nano Lett; 2017 Jul; 17(7):4277-4283. PubMed ID: 28603996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman spectroscopy of lithographically patterned graphene nanoribbons.
    Ryu S; Maultzsch J; Han MY; Kim P; Brus LE
    ACS Nano; 2011 May; 5(5):4123-30. PubMed ID: 21452879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exciton-dominated optical response of ultra-narrow graphene nanoribbons.
    Denk R; Hohage M; Zeppenfeld P; Cai J; Pignedoli CA; Söde H; Fasel R; Feng X; Müllen K; Wang S; Prezzi D; Ferretti A; Ruini A; Molinari E; Ruffieux P
    Nat Commun; 2014 Jul; 5():4253. PubMed ID: 25001405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts.
    Poljak M; Matić M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence.
    Ma C; Xiao Z; Puretzky AA; Wang H; Mohsin A; Huang J; Liang L; Luo Y; Lawrie BJ; Gu G; Lu W; Hong K; Bernholc J; Li AP
    ACS Nano; 2020 Apr; 14(4):5090-5098. PubMed ID: 32283017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport properties of graphene nanoribbons with side-attached organic molecules.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smooth gap tuning strategy for cove-type graphene nanoribbons.
    de Sousa Araújo Cassiano T; Monteiro FF; Evaristo de Sousa L; Magela E Silva G; de Oliveira Neto PH
    RSC Adv; 2020 Jul; 10(45):26937-26943. PubMed ID: 35515758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variable range of the RKKY interaction in edged graphene.
    Duffy JM; Gorman PD; Power SR; Ferreira MS
    J Phys Condens Matter; 2014 Feb; 26(5):055007. PubMed ID: 24356184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.