BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24616083)

  • 1. Hydrophobic actuation of a DNA origami bilayer structure.
    List J; Weber M; Simmel FC
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4236-9. PubMed ID: 24616083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of binding properties of amphiphilic DNA containing multiple dodecyl phosphotriester linkages to lipid bilayer membrane.
    Makishi S; Shibata T; Okazaki M; Dohno C; Nakatani K
    Bioorg Med Chem Lett; 2014 Aug; 24(15):3578-81. PubMed ID: 24909080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fusion of Lipid and DNA Nanotechnology.
    Darley E; Singh JKD; Surace NA; Wickham SFJ; Baker MAB
    Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31816934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-cholesterol barges as programmable membrane-exploring agents.
    Johnson-Buck A; Jiang S; Yan H; Walter NG
    ACS Nano; 2014 Jun; 8(6):5641-9. PubMed ID: 24833515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique influence of cholesterol on modifying the aggregation behavior of surfactant assemblies: investigation of photophysical and dynamical properties of 2,2'-bipyridine-3,3'-diol, BP(OH)2 in surfactant micelles, and surfactant/cholesterol forming vesicles.
    Ghosh S; Kuchlyan J; Roychowdhury S; Banik D; Kundu N; Roy A; Sarkar N
    J Phys Chem B; 2014 Aug; 118(31):9329-40. PubMed ID: 25036947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biopolymer-Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure.
    Tan C; Zhang Y; Abbas S; Feng B; Zhang X; Xia W; Xia S
    J Agric Food Chem; 2015 Aug; 63(32):7277-85. PubMed ID: 26173584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The binding and insertion of imidazolium-based ionic surfactants into lipid bilayers: the effects of the surfactant size and salt concentration.
    Lee H; Jeon TJ
    Phys Chem Chem Phys; 2015 Feb; 17(8):5725-33. PubMed ID: 25623225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer.
    Alkilany AM; Frey RL; Ferry JL; Murphy CJ
    Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and self-folding of amphiphilic DNA origami.
    Zhou C; Wang D; Dong Y; Xin L; Sun Y; Yang Z; Liu D
    Small; 2015 Mar; 11(9-10):1161-4. PubMed ID: 25087844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphiphilic DNA tiles for controlled insertion and 2D assembly on fluid lipid membranes: the effect on mechanical properties.
    Dohno C; Makishi S; Nakatani K; Contera S
    Nanoscale; 2017 Mar; 9(9):3051-3058. PubMed ID: 28186523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel cationic amphiphilic derivatives from vernonia oil: synthesis and self-aggregation into bilayer vesicles, nanoparticles, and DNA complexants.
    Grinberg S; Linder C; Kolot V; Waner T; Wiesman Z; Shaubi E; Heldman E
    Langmuir; 2005 Aug; 21(17):7638-45. PubMed ID: 16089364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry measurements of the phospholipid bilayer anchoring stability and kinetics of hydrophobically modified DNA oligonucleotides.
    van der Meulen SA; Dubacheva GV; Dogterom M; Richter RP; Leunissen ME
    Langmuir; 2014 Jun; 30(22):6525-33. PubMed ID: 24823835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Registered and antiregistered phase separation of mixed amphiphilic bilayers.
    Williamson JJ; Olmsted PD
    Biophys J; 2015 Apr; 108(8):1963-76. PubMed ID: 25902436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface.
    Suzuki Y; Endo M; Yang Y; Sugiyama H
    J Am Chem Soc; 2014 Feb; 136(5):1714-7. PubMed ID: 24428846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-assisted growth of DNA origami nanostructure arrays.
    Kocabey S; Kempter S; List J; Xing Y; Bae W; Schiffels D; Shih WM; Simmel FC; Liedl T
    ACS Nano; 2015; 9(4):3530-9. PubMed ID: 25734977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New gluconamide-type cationic surfactants: Interactions with DNA and lipid membranes.
    Misiak P; Wilk KA; Kral T; Woźniak E; Pruchnik H; Frąckowiak R; Hof M; Różycka-Roszak B
    Biophys Chem; 2013; 180-181():44-54. PubMed ID: 23838623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrophobic disordered peptide spontaneously anchors a covalently bound RNA hairpin to giant lipidic vesicles.
    Le Chevalier Isaad A; Carrara P; Stano P; Krishnakumar KS; Lafont D; Zamboulis A; Buchet R; Bouchu D; Albrieux F; Strazewski P
    Org Biomol Chem; 2014 Sep; 12(33):6363-73. PubMed ID: 24915577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-tuning the surface functionality of aqueous luminescent nanocrystals through surfactant bilayer modification.
    Zhang H; Liu Y; Zhang J; Sun H; Wu J; Yang B
    Langmuir; 2008 Nov; 24(22):12730-3. PubMed ID: 18947209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.